Impact of flux uncertainties for SBND

Andrew Furmanski NA61/SHINE workshop 16th December 2022

Short Baseline Oscillations

• Excess electron-like events at MiniBooNE

Short Baseline Oscillations

- Excess electron-like events at MiniBooNE
- Interpret as oscillations
 - Leads to ~eV scale neutrino hypothesis

Short Baseline Oscillations

- Excess electron-like events at MiniBooNE
- Interpret as oscillations
 - Leads to ~eV scale neutrino hypothesis
- Interpret as photons, e⁺e⁻ pairs
 - Huge landscape of options!

SBN

- Three liquid argon TPC neutrino detectors
 - Approx. 1kton total active mass
 - Baselines from 110m to 600m
- World-leading eV-scale oscillation sensitivity

MicroBooNE

- Data run ended last year
- First results limit sterile neutrino parameter space
- Also used for BSM searches
- And a wealth of neutrino-argon interaction measurements

arXiv:2210.10216

SBND physics program

• Neutrino-nucleus interaction measurements

SBND physics program

- Neutrino-nucleus interaction measurements
- BSM physics searches

SBND physics program

- Neutrino-nucleus interaction measurements
- BSM physics searches
- Near Detector for SBN oscillation measurements
- And standalone osc searches

SBND status

- Moved TPC and PDS to detector building two weeks ago (see https://www.youtube.com/watch?v=w65vNO5XpUM)
- Cryostat complete
- CRT tested and ready for installation
- Final installation expected to be complete summer 2023

The Booster Neutrino Beam

- 8GeV Proton Beam
- Berillium target
- Single focusing horn
- On-axis flux peak
 600MeV
- 99.5% muon flavour

SBND-PRISM

SBND-PRISM

SBND-PRISM

Flux Uncertainties - v_{L}

- Uncertainties very large at low energies
- Driven by lack of data for

 $\begin{array}{l} p+Be \rightarrow \ \pi+X \ below \\ 750 MeV/c \end{array}$

 Expected to be limiting uncertainty in many analyses

N.B. Much of this is informed by experience from MiniBooNE and then MicroBooNE

Flux Uncertainties - v_{μ}

- Uncertainties very large at low energies
- Driven by lack of data for

 $\begin{array}{l} p+Be \rightarrow \ \pi+X \ below \\ 750 MeV/c \end{array}$

 Expected to be limiting uncertainty in many analyses

N.B. Much of this is informed by experience from MiniBooNE and then MicroBooNE

Flux Uncertainties - v_e

- Kaon uncertainties make assumptions:
 - Feynman scaling from higher energy data
 - SciBooNE measurement of high-energy ν_{μ}
- Dedicated measurements would be much better!

Flux Uncertainties - v_e

- Kaon uncertainties make assumptions:
 - Feynman scaling from higher energy data
 - SciBooNE measurement of high-energy ν_{μ}
- Dedicated measurements would be much better!

Impact on Cross Sections

Flux uncertainties depend on neutrino energy

But we don't measure neutrino energy directly

Impact on Cross Sections

Impact on Cross Sections

- Extremely high statistical precision expected
- Uncertainty on absolute cross section driven by flux
- Already dominates stats at MicroBooNE (30x lower event rate)

Impact on Oscillations

- At high sterile neutrino mass, oscillation peak is at SBND
- Estimate of event rate limited by flux uncertainties
 - And cross section uncertainties
- Becomes a "shape" measurement
- But the flux uncertainties also have a shape...

Impact on BSM searches

- BSM searches usually have neutrino backgrounds
- Neutrino flux uncertainties obviously matter
- Cross section uncertainties depend on flux uncertainties

Phys. Rev. D 106, 092006 (2022)

Impacts on BSM searches

- Interpreting a rate limit as a coupling limit (or mixing, etc) requires production process
- Many models assume neutral meson decays
- $\pi^{_0}$ and η production matter
- Other searches use KDAR from beam dump

Using PRISM again

- Neutrino backgrounds vary with off-axis angle
 - Beam is focused
- BSM production through neutral mesons
 - Unfocused
- Natural constraint signal and background have different shapes!

Conclusions

- SBND has a rich physics program
- Reduced flux uncertainties would improve most analyses
- Largest improvement would likely come from low-energy pion yield measurements

Thank You

