

Exotic resonances

Francesco Giacosa

UJK Kielce (Poland) & Goethe U Frankfurt (Germany)

in collaboration with:
S. Jafarzade, A. Vereijken, E. Trotti, A. Koenigstein,
M. Piotrowska, V. Shastry
A. Pilloni, R. Pisarski, C. Fischer

NA61++/SHINE: Physics opportunities from ions to pions

15-17/12/2022 - CERN

Outline

Symmetries of QCD

Brief recall of conventional mesons

Unconventional (exotic) mesons

Toward a nonet of hybrid states

Glueballs: status and recent news

Bound state of glueballs? Bound states of Higgs?

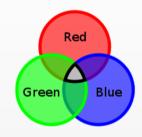
Conclusions

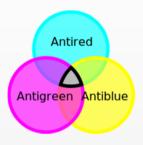
Symmetries of QCD

Giuseppe Lodovico Lagrangia

Born 25 January 1736

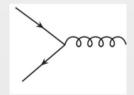
Turin


Died 10 April 1813 (aged 77)


Paris

The QCD Lagrangian

Quark: u,d,s and c,b,t R,G,B

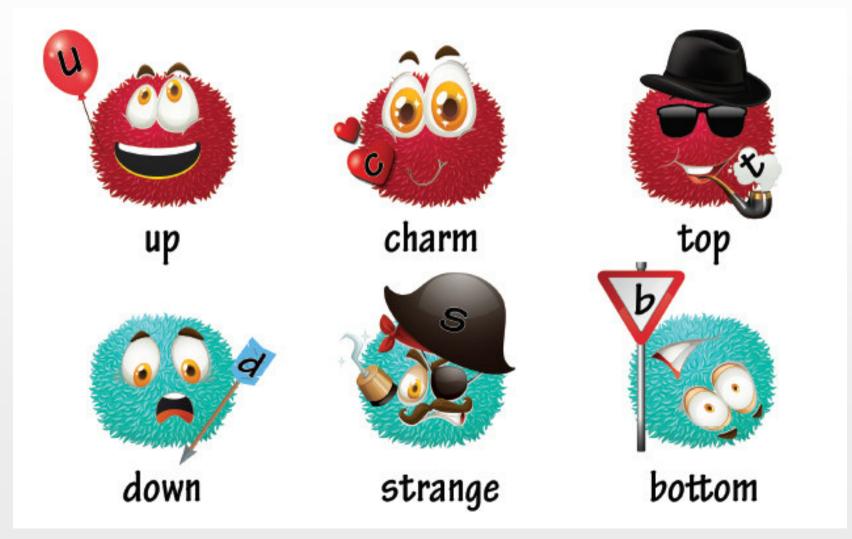


$$q_{i} = \begin{pmatrix} q_{i}^{R} \\ q_{i}^{G} \\ q_{i}^{B} \end{pmatrix}; i = u,d,s,...$$

8 type of gluons (RG,BG,...)

$$A_{\mu}^{a}$$
; $a = 1,..., 8$

$$\mathcal{L}_{QCD} = \sum_{i=1}^{N_f} \overline{q}_i (i\gamma^{\mu} D_{\mu} - m_i) q_i - \frac{1}{4} G^a_{\mu\nu} G^{a,\mu\nu}$$

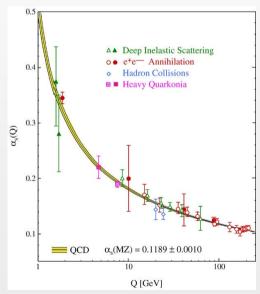


Confinement: quarks never 'seen' directly. How they might look like ©

Picture by Pawel Piotrowski

Trace anomaly: the emergence of a dimension

Chiral limit: $m_s = 0$

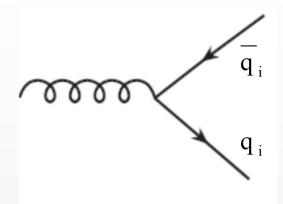

$$x^{\mu} \rightarrow x'^{\mu} = \lambda^{-1} x^{\mu}$$

is a classical symmetry broken by quantum fluctuations (trace anomaly)

Dimensional transmutation

$$\Lambda_{\rm YM} \approx 250 \, \text{M eV}$$

$$\alpha_{\rm S}(\mu=Q) = \frac{g^2(Q)}{4\pi}$$



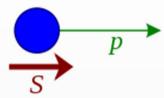
Effective gluon mass: $m_{gluon} = 0 \rightarrow m_{gluon}^* \approx 500 - 800 \, \mathrm{MeV}$

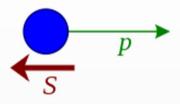
Gluon condensate: $\left\langle G_{\mu\nu}^{a}G^{a,\mu\nu}\right\rangle \neq 0$

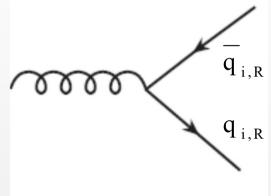
Flavor symmetry

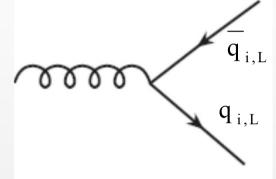
Gluon-quark-antiquark vertex

It is democratic! The gluon couples to each flavor with the same strength


$$q_i \rightarrow U_{ij} q_j$$


$$U \in U(3)_V \rightarrow U^+U = 1$$


Chiral symmetry


Right-handed:

$$q_{i,R} = q_{i,R} + q_{i,L}$$

$$q_{i,R} = \frac{1}{2} (1 + \gamma^{5}) q_{i}$$

$$q_{i,L} = \frac{1}{2} (1 - \gamma^{5}) q_{i}$$

$$q_{i} = q_{i,R} + q_{i,L} \rightarrow U_{ij}^{R} q_{j,R} + U_{ij}^{L} q_{j,L}$$

$$U(3)_{R} \times U(3)_{L} = U(1)_{R+L} \times U(1)_{R-L} \times SU(3)_{R} \times SU(3)_{L}$$

baryon number

anomaly U(1)A

SSB into SU(3)V

Chiral (or axial) anomaly: explicitely broken by quantum fluctuations

$$\partial^{\mu}(\bar{q}^{i}\gamma_{\mu}\gamma_{5}q^{i}) = \frac{3g^{2}}{16\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} \operatorname{tr}(G_{\mu\nu}G_{\rho\sigma})$$

In the chiral limit (mi=0) chiral symmetry is exact, but is **spontaneously broken** by the QCD vacuum

Symmetries of QCD and breakings

SU(3)color: exact. Confinement: you never see color, but only white states.

Dilatation invariance: holds only at a classical level and in the chiral limit.

Broken by quantum fluctuations (scale anomaly)

and by quark masses.

SU(3)RXSU(3)L: holds in the chiral limit, but is broken by nonzero quark

masses. Moreover, it is **spontaneously** broken to U(3)V=R+L

U(1)A=R-L: holds at a classical level, but is also broken by quantum

fluctuations (chiral anomaly)

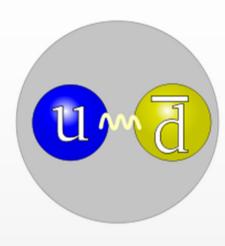
Conventional mesons: quark-antiquark states

Hadrons

The QCD Lagrangian contains 'colored' quarks and gluons. However, no ,colored' state has been seen.

Confinement: physical states are "white" and are called hadrons.

Hadrons can be:


Mesons: bosonic hadrons

Baryons: fermionic hadrons

A meson is **not necessarily** a quark-antiquark state. A quark-antiquark state is a conventional meson.

Example of conventional quark-antiquark states: the ρ and the π mesons

Rho-meson

$$m_{o^{+}} = 775 \text{ MeV}$$

$$\left|\rho^{+}\right\rangle \propto \left|u\bar{d}\right\rangle + \frac{1}{N_{c}}\left(\left|\pi^{+}\pi^{0}\right\rangle + ...\right)$$

where

$$\left|u\bar{d}\right\rangle = \left|\text{valence }u + \text{valence }\bar{d} + \text{gluons}\right\rangle$$

Pion

$$m_{\pi^{+}} = 139 \text{ MeV}$$

$$m_u + m_d \approx 7 \text{ MeV}$$

Mass generation in QCD is a nonpert. penomenon based on SSB

(mentioned previusly).

Quark-antiquark mesons (PDG 2018)

$n^{\;2s+1}\ell_J$	J^{PC}	$\overline{ud}, \overline{ud}, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$ \mathbf{I} = \frac{1}{2} \\ u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s $	f' = 0	I = 0 f	$\theta_{ ext{quad}}$ [°]	$ heta_{ m lin}$ [°]
$1 {}^1S_0$	0-+	π	K	η	$\eta'(958)$	-11.3	-24.5
$1 {}^3S_1$	1	$\rho(770)$	$K^*(892)$	$\phi(1020)$	$\omega(782)$	39.2	36.5
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	4.5	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	-3	
$1 {}^3P_2$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6	28.0
$1\ ^1D_2$	2-+	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 \ ^3D_1$	1	ho(1700)	K*(1680)		$\omega(1650)$		
$1~^3D_2$	2		$K_2(1820)$				
$1 ^3D_3$	3	$ ho_{3}(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	31.8	30.8
$1 {}^3F_4$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$		
$1 ^3G_5$	5	$\rho_5(2350)$	K ₅ *(2380)				
$1 ^3H_6$	6++	$a_6(2450)$			$f_6(2510)$		
$2 {}^1S_0$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2{}^3S_1$	1	ho(1450)	K*(1410)	$\phi(1680)$	$\omega(1420)$		
$3 {}^{1}S_{0}$	0-+	$\pi(1800)$	i.		$\eta(1760)$		

Quark-antiquark mesons (PDG 2018)

$n^{\;2s+1}\ell_J$	J^{PC}	$u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$ \mathbf{I} = \frac{1}{2} \\ u\overline{s}, d\overline{s}; \overline{ds}, -\overline{u}s $	f' = 0	I = 0 f	$ heta_{ ext{quad}}$ [°]	$ heta_{ m lin}$ [$^{\circ}$]
$1 {}^1S_0$	0-+	π	K	η	$\eta'(958)$	-11.3	-24.5
$1 {}^3S_1$	1	$\rho(770)$	$K^*(892)$	$\phi(1020)$	$\omega(782)$	39.2	36.5
$1 ^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 {}^3P_0$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	-3	
$1 ^3P_1$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$		
$1 \ ^3P_2$	2++	$a_2(1320)$	$K_2^*(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6	28.0
$1\ ^1D_2$	2-+	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 ^3D_1$	1	$\rho(1700)$	$K^*(1680)$		$\omega(1650)$		
$1~^3D_2$	2		$K_2(1820)$				
$1 ^3D_3$	3	$\rho_{3}(1690)$	$K_3^*(1780)$	$\phi_3(1850)$	$\omega_3(1670)$	31.8	30.8
$1{}^3F_4$	4++	$a_4(2040)$	$K_4^*(2045)$		$f_4(2050)$		
1^3G_5	5	$\rho_5(2350)$	$K_5^*(2380)$				
$1{}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$		
$2{}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2\ ^{3}S_{1}$	1	ho(1450)	K*(1410)	$\phi(1680)$	$\omega(1420)$		
$3{}^{1}S_{0}$	0-+	$\pi(1800)$	2-		$\eta(1760)$		

Some selected nonets

$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners
$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J=0
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J = 0
$1^{3}S_{1}$	1	$\rho(770)$	$K^{\star}(892)$	$\omega(782)$	$\phi(1020)$	Vector	J=1
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	$J=1^{\star}$
$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	J=1
$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	J=2
$1^{3}D_{2}$	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	J=Z
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor	
$1^{3}D_{3}$	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor	

Chiral partners

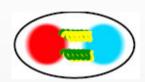
	$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners	
	$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J = 0	
L	$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J = 0	
Г	$1^{3}S_{1}$	1	$\rho(770)$	<i>K</i> *(892)	$\omega(782)$	$\phi(1020)$	Vector	J=1	
	$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1	
Γ	$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	$J=1^*$	
	$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	J - 1	
Г	$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	J=2	
l	1^3D_2	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	J=Z	
	$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor		
	1^3D_3	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor		

TABLE I. Chiral multiplets, their currents, and transformations up to J=3. [* and/or $f_0(1500)$; **a mix of.] The first two columns correspond to the assignment suggested in the Quark Model review of the PDG [8], to which we refer for further details and references (see also the discussion in the text).

J^{PC} , $^{2S+1}L_J$	$\begin{cases} I = 1(\bar{u}d, \bar{d}u, \frac{\bar{d}d - \bar{u}u}{\sqrt{2}}) \\ I = 1(-\bar{u}s, \bar{s}u, \bar{d}s, \bar{s}d) \\ I = 0(\frac{\bar{u}u + \bar{d}d}{\sqrt{2}}, \bar{s}s)^{\star\star} \end{cases}$	Microscopic currents	Chiral multiplet	Transformation under $SU(3)_L \times SU(3)_R \times \times U(1)_A$
0-+, 150	$\begin{cases} \pi \\ K \\ \eta, \eta'(958) \end{cases}$ $\begin{cases} a_0(1450) \end{cases}$	$P^{ij} = \frac{1}{2} \bar{q}^j i \gamma^5 q^i$ $S^{ij} = \frac{1}{2} \bar{q}^j q^i$	$egin{aligned} \Phi &= S + \mathrm{i} P \ (\Phi^{ij} &= ar{q}_{\mathrm{R}}^{j} q_{\mathrm{L}}^{i}) \end{aligned}$	$\Phi \to {\rm e}^{-2{\rm i}\alpha} U_{\rm L} \Phi U_{\rm R}^\dagger$
0 ⁺⁺ , ³ P ₀	$\begin{cases} K_0^*(1430) \\ f_0(1370), f_0(1710)^* \end{cases}$ $\begin{cases} \rho(770) \\ K^*(892) \end{cases}$	$V_{\mu}^{ij}=rac{1}{2}ar{q}^{j}\gamma_{\mu}q^{i}$	$egin{aligned} L_{\mu} &= V_{\mu} + A_{\mu} \ (L_{\mu}^{ij} &= ar{q}_{\mathrm{L}}^{j} \gamma_{\mu} q_{\mathrm{L}}^{i}) \end{aligned}$	$L_{\mu} \rightarrow U_{\rm L} L_{\mu} U_{\rm L}^{\dagger}$
1 ⁺⁺ , ³ P ₁	$\begin{cases} \omega(782), \phi(1020) \\ a_1(1260) \\ K_{1,A} \\ f_1(1285), f_1(1420) \end{cases}$	$A^{ij}_{\mu} = \frac{1}{2} \bar{q}^j \gamma^5 \gamma_{\mu} q^i$	$R_{\mu} = V_{\mu} - A_{\mu}$ $(R_{\mu}^{ij} = \bar{q}_{\mathrm{R}}^{j} \gamma_{\mu} q_{\mathrm{R}}^{i})$	$R_{\mu} \to U_{\rm R} R_{\mu} U_{\rm R}^{\dagger}$
1 ⁺⁻ , ¹ P ₁	$\begin{cases} b_1(1235) \\ K_{1,B} \\ h_1(1170), h_1(1380) \end{cases}$ $(\rho(1700))$	$P_{\mu}^{ij} = -\frac{1}{2}\bar{q}^{j}\gamma^{5}\overset{\leftrightarrow}{D}_{\mu}q^{i}$ $S_{\mu}^{ij} = \frac{1}{2}\bar{q}^{j}i\overset{\leftrightarrow}{D}_{\mu}q^{i}$	$\Phi_{\mu} = S_{\mu} + iP_{\mu}$ $(\Phi_{\mu}^{ij} = \bar{q}_{R}^{j} i \overset{\leftrightarrow}{D}_{\mu} q_{L}^{i})$	$\Phi_{\mu} \rightarrow \mathrm{e}^{-2\mathrm{i}\alpha} U_{\mathrm{L}} \Phi_{\mu} U_{\mathrm{R}}^{\dagger}$
$1^{}$, ${}^{3}D_{1}$ 2^{++} , ${}^{3}P_{2}$	$\begin{cases} K^*(1680) \\ \omega(1650), \phi(?) \end{cases}$ $\begin{cases} a_2(1320) \\ K_2^*(1430) \end{cases}$	$V^{ij}_{\mu\nu} = \frac{1}{2} \bar{q}^j (\gamma_\mu i \overset{\leftrightarrow}{D}_\mu + \cdots) q^i$	$egin{aligned} L_{\mu u} &= V_{\mu u} + A_{\mu u} \ (L^{ij}_{\mu u} &= ar{q}^{j}_{ m L}(\gamma_{\mu}i D^{\leftrightarrow}_{ u} + \cdots) q^{i}_{ m L}) \end{aligned}$	$L_{\mu u} ightarrow U_{ m L} L_{\mu u} U_{ m L}^{\dagger}$
2, ³ D ₂	$\begin{cases} f_2(1270), f_2'(1525) \\ f_2(?) \\ K_2(1820) \\ \omega_2(?), \phi_2(?) \end{cases}$	$A^{ij}_{\mu\nu}=rac{1}{2}ar{q}^{j}(\gamma^{5}\gamma_{\mu}i\overset{\leftrightarrow}{D_{ u}}+\cdots)q^{i}$	$R_{\mu\nu} = Q_{\rm L}(\gamma_{\mu}D_{\nu} + \cdots)Q_{\rm L})$ $R_{\mu\nu} = V_{\mu\nu} - A_{\mu\nu}$ $(R^{ij}_{\mu\nu} = \bar{q}^{j}_{\rm R}(\gamma_{\mu}D_{\nu} + \cdots)Q^{i}_{\rm R})$	$R_{\mu\nu} o U_{\rm R} R_{\mu\nu} U_{\rm R}^{\dagger}$
2 ⁻⁺ , ¹ D ₂	$\begin{cases} \pi_2(1670) \\ K_2(1770) \\ \eta_2(1645), \eta_2(1870) \end{cases}$	$P^{ij}_{\mu\nu} = -\frac{1}{2}\bar{q}^{j}(\mathrm{i}\gamma^{5}\overset{\leftrightarrow}{D_{\mu}}\overset{\leftrightarrow}{D_{\nu}} + \cdots)q^{i}$	$\Phi_{\mu\nu} = S_{\mu\nu} + iP_{\mu\nu}$	$\Phi_{\mu\nu} \rightarrow e^{-2i\alpha}U_L\Phi_{\mu\nu}U_R^{\dagger}$
2 ⁺⁺ , ³ F ₂	$\begin{cases} a_2(?) \\ K_2^*(?) \\ f_2(?), f_2'(?) \end{cases}$	$S_{\mu\nu}^{ij} = -\frac{1}{2}\bar{q}^j(\stackrel{\leftrightarrow}{D_\mu}\stackrel{\leftrightarrow}{D_\nu} + \cdots)q^i$	$(\Phi^{ij}_{\mu\nu} = \bar{q}^j_{\mathrm{R}}(\vec{D}_{\mu}\vec{D}_{\nu} + \cdots)q^i_{\mathrm{L}})$	
3, ³ D ₃	$\begin{cases} \rho_3(1690) \\ K_3^*(1780) \\ \omega_3(1670), \phi_3(1850) \end{cases}$	1	:	:

Table from:

F.G., R. Pisarski, A. Koenigstein Phys.Rev.D 97 (2018) 9, 091901 e-Print: 1709.07454


Non-conventional mesons: beyond qq

1) Glueballs

2) Hybrids

Compact diquark-antidiquark states

3) Four-quark states

Molecular states (a type of dynamical generation)

Companion poles (another type of dynamical generation)

(Some) novel results for conventional mesons

Strategy

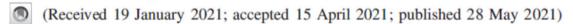
- For a given nonet, write down the corresponding model-Lagrangian respecting flavor (or if possible chiral) symmetry.
- Consider only C, P, invariant terms
- Calculate decays in all possible channels (first at tree-level, in some selected case including finite width or loop effects;
- Fit free parameters to known experimental value;
- Make postdictions and predictions.

Mesons with J=3

$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners
$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J=0
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J=0
$1^{3}S_{1}$	1	$\rho(770)$	$K^{\star}(892)$	$\omega(782)$	$\phi(1020)$	Vector	J=1
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	$J=1^{\star}$
$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	J=1
$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	1 0
$1^{3}D_{2}$	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	J=2
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor	
1^3D_3	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor	

Phenomenology of $J^{PC} = 3^{--}$ tensor mesons

Shahriyar Jafarzade[®]


Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland

Adrian Koenigstein[†]

Institute for Theoretical Physics, Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany

Francesco Giacosa 6 †

Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, P-25-406 Kielce, Poland, and Institute for Theoretical Physics, Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany

We study the strong and radiative decays of the antiquark-quark ground state $J^{PC}=3^{--}$ $(n^{2S+1}L_J=1^3D_3)$ nonet $\{\rho_3(1690),K_3^*(1780),\phi_3(1850),\omega_3(1670)\}$ in the framework of an effective quantum field theory approach, based on the $SU_V(3)$ -flavor symmetry. The effective model is fitted to experimental data listed by the Particle Data Group. We predict numerous experimentally unknown decay widths and branching ratios. An overall agreement of theory (fit and predictions) with experimental data confirms the $\bar{q}q$ nature of the states and qualitatively validates the effective approach. Naturally, experimental clarification as well as advanced theoretical description is needed for trustworthy quantitative predictions, which is observed from some of the decay channels. Besides conventional spin-3 mesons, theoretical predictions for ratios of strong and radiative decays of a hypothetical glueball state $G_3(4200)$ with $J^{PC}=3^{--}$ are also presented.

J=3: post- and predictions

TABLE V. Decays of $J^{PC} = 3^{--}$ mesons into two pseudoscalars. Experimental data is taken from Ref. [1].

Decay process	Theory Γ/MeV	Experiment Γ/MeV
$\rho_3(1690) \to \pi\pi$ $\rho_3(1690) \to \bar{K}K$	32.7 ± 2.3 4.0 ± 0.3	38.0 ± 3.2 2.54 ± 0.45
$K_3^*(1780) \to \pi \bar{K}$ $K_3^*(1780) \to \bar{K}\eta$ $K_3^*(1780) \to \bar{K}\eta'(958)$	$18.5 \pm 1.3 \\ 7.4 \pm 0.5 \\ 0.021 \pm 0.001$	29.9 ± 4.3 48 ± 22
$\omega_3(1670) \to \bar{K}K$ $\phi_3(1850) \to \bar{K}K$	3.0 ± 0.2 18.8 ± 1.3	Seen

TABLE VII. Theoretical predictions for the radiative decays $W_3 \rightarrow \gamma P$.

Decay process	Theory Γ/keV
$\rho_3^{\pm/0}(1690) \to \gamma \pi^{\pm/0}$	69 ± 14
$\rho_3^0(1690) \rightarrow \gamma \eta$	157 ± 32
$\rho_3^0(1690) \to \gamma \eta'(958)$	20 ± 4
$K_3^{\pm}(1780) \rightarrow \gamma K^{\pm}$	58 ± 12
$K_3^0(1780) \to \gamma K^0$	231 ± 48
$\omega_3(1670) \rightarrow \gamma \pi^0$	560 ± 120
$\omega_3(1670) \rightarrow \gamma \eta$	19 ± 4
$\omega_3(1670) \rightarrow \gamma \eta'(958)$	1.4 ± 0.3
$\phi_3(1850) \rightarrow \gamma \pi^0$	4 ± 1
$\phi_3(1850) \rightarrow \gamma \eta$	129 ± 26
$\phi_3(1850) \rightarrow \gamma \eta'(958)$	35 ± 7

TABLE VI. Decays of $J^{PC} = 3^{--}$ mesons into a pseudoscalar-vector pair. Experimental data taken from Ref. [1].

Decay process	Theory Γ/MeV	Experiment Γ/MeV
$\rho_3(1690) \rightarrow \rho(770)\eta$	3.8 ± 0.8	Seen
$\rho_3(1690) \to \bar{K}^*(892)K$	3.4 ± 0.7	
$\rho_3(1690) \to \omega(782)\pi$	35.8 ± 7.4	25.8 ± 9.8
$\rho_3(1690) \to \phi(1020)\pi$	0.036 ± 0.007	
$K_3^*(1780) \to \rho(770)K$	16.8 ± 3.5	49.3 ± 15.7
$K_3^*(1780) \to \bar{K}^*(892)\pi$	27.2 ± 5.6	31.8 ± 9.0
$K_3^*(1780) \to \bar{K}^*(892)\eta$	0.09 ± 0.02	
$K_3^*(1780) \to \omega(782)\bar{K}$	4.3 ± 0.9	
$K_3^*(1780) \to \phi(1020)\bar{K}$	1.2 ± 0.3	
$\omega_3(1670) \rightarrow \rho(770)\pi$	97 ± 20	Seen
$\omega_3(1670) \to \bar{K}^*(892)K$	2.9 ± 0.6	
$\omega_3(1670) \rightarrow \omega(782)\eta$	2.8 ± 0.6	
$\omega_3(1670) \to \phi(1020)\eta$	$(7.6 \pm 1.6) \times 10^{-6}$	
$\phi_3(1850) \to \rho(770)\pi$	1.1 ± 0.2	
$\phi_3(1850) \to \bar{K}^*(892)K$	35.5 ± 7.3	Seen
$\phi_3(1850) \to \omega(782)\eta$	0.015 ± 0.003	
$\phi_3(1850) \to \omega(782)\eta'(958)$	0.003 ± 0.001	
$\phi_3(1850) \to \phi(1020)\eta$	3.8 ± 0.8	

$$\begin{pmatrix} \omega_3(1670) \\ \phi_3(1850) \end{pmatrix} = \begin{pmatrix} \cos \beta_{w_3} & \sin \beta_{w_3} \\ -\sin \beta_{w_3} & \cos \beta_{w_3} \end{pmatrix} \begin{pmatrix} \omega_{3,N} \\ \omega_{3,S} \end{pmatrix}$$

$$\beta_{w_3} = 3.5^{\circ}$$

Tensor and (axial-)tensors

$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners
$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J=0
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J=0
$1^{3}S_{1}$	1	$\rho(770)$	$K^{\star}(892)$	$\omega(782)$	$\phi(1020)$	Vector	J=1
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	$J=1^{\star}$
$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	J = 1
$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	J=2
$1^{3}D_{2}$	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	3 — 2
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor	
1^3D_3	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor	

PHYSICAL REVIEW D 106, 036008 (2022)

From well-known tensor mesons to yet unknown axial-tensor mesons

Shahriyar Jafarzade[©], ¹ Arthur Vereijken, ¹ Milena Piotrowska, ¹ and Francesco Giacosa^{1,2}

¹ Institute of Physics, Jan Kochanowski University, ulica Uniwersytecka 7, 25-406 Kielce, Poland

² Institute for Theoretical Physics, J. W. Goethe University,

Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany

While the ground-state tensor ($J^{PC}=2^{++}$) mesons $a_2(1320)$, $K_2^*(1430)$, $f_2(1270)$, and $f_2'(1525)$ are well known experimentally and form an almost ideal nonet of quark-antiquark states, their chiral partners, the ground-states axial-tensor ($J^{PC}=2^{--}$) mesons are poorly settled: only the kaonic member $K_2(1820)$ of the nonet has been experimentally found, whereas the isovector state ρ_2 and two isoscalar states ω_2 and ϕ_2 are still missing. Here, we study masses, strong, and radiative decays of tensor and axial-tensor mesons within a chiral model that links them: the established tensor mesons are used to test the model and to determine its parameters, and subsequently various predictions for their chiral partners, the axial-tensor mesons, are obtained. The results are compared to current lattice QCD outcomes as well as to other theoretical approaches and show that the ground-state axial-tensor mesons are expected to be quite broad, the vector-pseudoscalar mode being the most prominent decay mode followed by the tensor-pseudoscalar one. Nonetheless, their experimental finding seems to be possible in ongoing and/or future experiments.

DOI: 10.1103/PhysRevD.106.036008

Postdictions (left) predictions (right)

Decay process (in model)	eLSM (MeV)	PDG (MeV)
$a_2(1320) \longrightarrow \bar{K} K$	4.06 ± 0.14	$7.0^{+2.0}_{-1.5} \leftrightarrow (4.9 \pm 0.8)\%$
$a_2(1320) \longrightarrow \pi \eta$	25.37 ± 0.87	$18.5 \pm 3.0 \leftrightarrow (14.5 \pm 1.2)\%$
$a_2(1320) \longrightarrow \pi \eta'(958)$	1.01 ± 0.03	$0.58 \pm 0.10 \leftrightarrow (0.55 \pm 0.09)\%$
$K_2^*(1430) \longrightarrow \pi \bar{K}$	44.82 ± 1.54	$49.9 \pm 1.9 \leftrightarrow (49.9 \pm 0.6)\%$
$f_2(1270) \longrightarrow \bar{K} K$	3.54 ± 0.29	$8.5 \pm 0.8 \leftrightarrow (4.6^{+0.5}_{-0.4})\%$
$f_2(1270) \longrightarrow \pi \pi$	168.82 ± 3.89	$157.2^{+4.0}_{-1.1} \leftrightarrow (84.2^{+2.9}_{-0.9})\%$
$f_2(1270) \longrightarrow \eta \eta$	0.67 ± 0.03	$0.75 \pm 0.14 \leftrightarrow (0.4 \pm 0.08)\%$
$f_2'(1525) \longrightarrow \bar{K} K$	23.72 ± 0.60	$75 \pm 4 \leftrightarrow (87.6 \pm 2.2)\%$
$f_2'(1525) \longrightarrow \pi \pi$	0.67 ± 0.14	$0.71 \pm 0.14 \leftrightarrow (0.83 \pm 0.16)\%$
$f_2'(1525) \longrightarrow \eta \eta$	1.81 ± 0.05	$9.9 \pm 1.9 \leftrightarrow (11.6 \pm 2.2)\%$

Decay process (in model)	eLSM (MeV)	PDG-2020 (MeV)
$a_2(1320) \longrightarrow \rho(770) \pi$	71.0 ± 2.6	$73.61 \pm 3.35 \leftrightarrow (70.1 \pm 2.7)\%$
$K_2^*(1430) \longrightarrow \bar{K}^*(892) \pi$	27.9 ± 1.0	$26.92 \pm 2.14 \leftrightarrow (24.7 \pm 1.6)\%$
$K_2^*(1430) \longrightarrow \rho(770) K$	10.3 ± 0.4	$9.48 \pm 0.97 \leftrightarrow (8.7 \pm 0.8)\%$
$K_2^*(1430) \longrightarrow \omega(782) \bar{K}$	3.5 ± 0.1	$3.16 \pm 0.88 \leftrightarrow (2.9 \pm 0.8)\%$
$f_2'(1525) \longrightarrow \bar{K}^*(892) K + \text{c.c.}$	19.89 ± 0.73	

Decay process (in model)	eLSM (MeV)
$\rho_2(?) \longrightarrow \rho(770) \eta$	$\approx 99 \pm 50$
$\rho_2(?) \longrightarrow K^*(892) K + c.c.$	$\approx 85 \pm 43$
$\rho_2(?) \longrightarrow \omega(782) \pi$	$\approx 419 \pm 210$
$\rho_2(?) \longrightarrow \phi(1020) \pi$	≈ 0.8
$K_{2,A} \longrightarrow \rho(770) K$	$\approx 195 \pm 98$
$K_{2,A} \longrightarrow \bar{K}^*(892) \pi$	$\approx 316 \pm 158$
$K_{2,A} \longrightarrow \bar{K}^*(892) \eta$	≈ 0.01
$K_{2,A} \longrightarrow \omega(782) \bar{K}$	$\approx 51 \pm 26$
$K_{2,A} \longrightarrow \phi(1020) \bar{K}$	$\approx 50 \pm 25$
$\omega_{2,N} \longrightarrow \rho(770) \pi$	$\approx 1314 \pm 657$
$\omega_{2,N} \longrightarrow K^*(892) K + \text{c.c.}$	$\approx 85 \pm 43$
$\omega_{2,N} \longrightarrow \omega(782) \eta$	$\approx 93 \pm 47$
$\omega_{2,N} \longrightarrow \phi(1020) \eta$	≈ 0.06
$\omega_{2,S} \longrightarrow \bar{K}^*(892) K + \text{c.c.}$	$\approx 510 \pm 255$
$\omega_{2,S} \longrightarrow \omega(782) \eta$	$\approx 1.0 \pm 0.5$
$\omega_{2,S} \longrightarrow \omega(782) \eta'(958)$	≈ 0.3
$\omega_{2,S} \longrightarrow \phi(1020) \eta$	$\approx 101 \pm 51$

Decay process (in model)	eLSM (MeV)
$\rho_2(?) \longrightarrow a_2(1320) \pi$	≈ 88
$K_{2,A} \longrightarrow K_2^{\star}(1430)\pi$	≈ 49
$K_{2,A} \longrightarrow a_2(1320) K$	≈ 84
$K_{2,A} \longrightarrow f_2(1270) K$	≈ 4
$\omega_{2,S} \longrightarrow K_2^{\star}(1430) K + \text{c.c.}$	≈ 15

Pseudotensor mesons

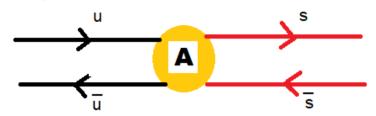
$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners
$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J=0
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J=0
$1^{3}S_{1}$	1	$\rho(770)$	$K^{\star}(892)$	$\omega(782)$	$\phi(1020)$	Vector	J=1
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	$J=1^{\star}$
$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	J = 1
$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	J=2
$1^{3}D_{2}$	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	J = Z
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor	
$1^{3}D_{3}$	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor	

Eur. Phys. J. A (2016) **52**: 356 DOI 10.1140/epja/i2016-16356-x THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Phenomenology of pseudotensor mesons and the pseudotensor glueball

Adrian Koenigstein^{1,2,a} and Francesco Giacosa^{3,1}


- ¹ Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
- ² Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
- $^3\,$ Institute of Physics, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406 Kielce, Poland

Received: 6 September 2016 / Revised: 11 November 2016 Published online: 9 December 2016 – © Società Italiana di Fisica / Springer-Verlag 2016 Communicated by R. Alkofer

Abstract. We study the decays of the pseudotensor mesons $(\pi_2(1670), K_2(1770), n_2(1645), n_2(1870))$ interpreted as the ground-state nonet of 1^1D_2 $\bar{q}q$ states using interaction Lagrangians which couple them to pseudoscalar, vector, and tensor mesons. While the decays of $\pi_2(1670)$ and $K_2(1770)$ can be well described, the decays of the isoscalar states $\eta_2(1645)$ and $\eta_2(1870)$ can be brought in agreement with the present experimental data only if the mixing angle between nonstrange and strange states is surprisingly large (about -42° , similar to the mixing in the pseudoscalar sector, in which the chiral anomaly is active). Such a large mixing angle is however at odd with all other conventional quark-antiquark nonets: if confirmed, a deeper study of its origin will be needed in the future. Moreover, the $\bar{q}q$ assignment of pseudotensor states predicts that the ratio $[\eta_2(1870) \rightarrow a_2(1320) \pi]/[\eta_2(1870) \rightarrow f_2(1270) \eta]$ is about 23.5. This value is in agreement with Barberis et al., (20.4 ± 6.6) , but disagrees with the recent reanalysis of Anisovich et al., (1.7 ± 0.4) . Future experimental studies are necessary to understand this puzzle. If Anisovich's value is confirmed, a simple nonet of pseudoscalar mesons cannot be able to describe data (different assignments and/or additional states, such as an hybrid state, will be needed). In the end, we also evaluate the decays of a pseudoscalar glueball into the aforementioned conventional $\bar{q}q$ states; a sizable decay into $K_2^*(1430)$ K and $a_2(1230)$ π together with a vanishing decay into pseudoscalar-vector pairs (such as $\rho(770) \pi$ and $K^*(892) K)$ are expected. This information can be helpful in future studies of glueballs at the ongoing BESIII and at the future PANDA experiments.

ArXiv: 1608.08777

Large mixing angle: where does it come from?

PHYSICAL REVIEW D **97**, 091901(R) (2018)

Rapid Communications

How the axial anomaly controls flavor mixing among mesons

Francesco Giacosa, 1,2,* Adrian Koenigstein, 2,† and Robert D. Pisarski 3,‡ ¹Institute of Physics, Jan Kochanowski University, ulica Swietokrzyska 15, 25-406 Kielce, Poland ²Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany ³Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

$$\begin{pmatrix} \eta_2(1645) \\ \eta_2(1870) \end{pmatrix} = \begin{pmatrix} \cos\beta_{pt} & \sin\beta_{pt} \\ -\sin\beta_{pt} & \cos\beta_{pt} \end{pmatrix} \begin{pmatrix} \eta_{2,N} \equiv \sqrt{\frac{1}{2}}(\bar{u}u + \bar{d}d) \\ \eta_{2,S} \equiv \bar{s}s \end{pmatrix} \underline{\beta_{pt} = -42^{\circ}}$$

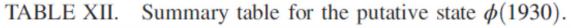
$$\beta_{pt} = -42^{\circ}$$

$$\begin{pmatrix} \eta \equiv \eta(547) \\ \eta' \equiv \eta(958) \end{pmatrix} = \begin{pmatrix} \cos\theta_P & \sin\theta_P \\ -\sin\theta_P & \cos\theta_P \end{pmatrix} \begin{pmatrix} \eta_N = \sqrt{1/2}(\bar{u}u + \bar{d}d) \\ \eta_S = \bar{s}s \end{pmatrix} \qquad \theta_P \simeq -42^\circ$$

For a recent re-analysis with decay widhts partial-wave:

V. Shastry, E. Trotti, F.G., Phys. Rev.D 105 (2022) 5, 054022 • e-Print: 2107.13501

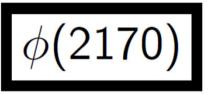
(Excited) vector mesons



$n^{2S+1}L_J$	J^{PC}	$I=1$ $u\overline{d}, d\overline{u}$ $\frac{d\overline{d}-u\overline{u}}{\sqrt{2}}$	$I=1/2$ $u\overline{s}, d\overline{s}$ $s\overline{d}, s\overline{u}$	$I=0$ $\approx \frac{u\overline{u}+d\overline{d}}{\sqrt{2}}$	$I=0$ $\approx s\overline{s}$	Meson names	Chiral Partners
$1^{1}S_{0}$	0-+	π	K	$\eta(547)$	$\eta'(958)$	Pseudoscalar	J=0
$1^{3}P_{0}$	0++	$a_0(1450)$	$K_0^{\star}(1430)$	$f_0(1370)$	$f_0(1500)/f_0(1710)$	Scalar	J=0
$1^{3}S_{1}$	1	$\rho(770)$	$K^{\star}(892)$	$\omega(782)$	$\phi(1020)$	Vector	J=1
$1^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}	$f_1(1285)$	$f_1'(1420)$	Axial-vector	J=1
$1^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}	$h_1(1170)$	$h_1(1415)$	Pseudovector	7
$1^{3}D_{1}$	1	$\rho(1700)$	$K^{\star}(1680)$	$\omega(1650)$	$\phi(???)$	Excited-vector	$J = 1^{\circ}$
$1^{3}P_{2}$	2++	$a_2(1320)$	$K_2^{\star}(1430)$	$f_2(1270)$	$f_2'(1525)$	Tensor	J=2
$1^{3}D_{2}$	2	$\rho_2(???)$	$K_2(1820)$	$\omega_2(???)$	$\phi_2(???)$	Axial-tensor	J=Z
$1^{1}D_{2}$	2-+	$\pi_2(1670)$	$K_2(1770)$	$\eta_2(1645)$	$\eta_2(1870)$	Pseudotensor	
$1^{3}D_{3}$	3	$\rho_3(1690)$	$K_3^{\star}(1780)$	$\omega_3(1670)$	$\phi_3(1850)$	J=3 - Tensor	

Prediction for $\phi(1930)$

Can one find this state?



Meson $\phi(1930)$				
Quark composition	$\approx s\bar{s}$			
Old spectroscopy notation	(Predom.) $n^{2S+1}L_J = 1^3D_1$			
n	(Predom.) 1			
S	(Predom.) $1\uparrow\uparrow$			
L	(Predom.) 2			
J^{PC}	1			
Mass	\approx 1930 \pm 40 MeV			
Deca	ys			
Decay channel	Decay width			
	(MeV)			
$\phi(1930) \to \bar{K}K$	104 ± 28			
$\phi(1930) \to K\bar{K}^*$	260 ± 109			
$\phi(1930) \rightarrow \Phi(1020)\eta$	67 ± 28			
$\phi(1930) \rightarrow \Phi(1020)\eta'$	≈0			
$\phi(1930) \rightarrow \gamma \eta$	0.19 ± 0.12			
$\phi(1930) \rightarrow \gamma \eta'$	0.13 ± 0.08			

arXiv: 1708.02593; it does not fit with φ(2170)

Citation: R.L. Workman et al. (Particle Data Group), to be published (2022)

$$I^G(J^{PC}) = 0^-(1^{-})$$

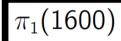
See the review on "Spectroscopy of Light Meson Resonances."

ϕ (2170) MASS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

2162 ± 7 OUR AVERAGE Error includes scale factor of 1.1.

φ(2170) WIDTH


VALUE (MeV) EVTS DOCUMENT ID TECN C

100 +31 OUR AVERAGE Error includes scale factor of 2.5.

Unconventional (exotic) mesons

Toward a nonet of hybrid state/PDG

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

See the review on "Spectroscopy of Light Meson Resonances" and a note in PDG 06, Journal of Physics **G33** 1 (2006).

$\pi_1(1600)$ T-Matrix Pole \sqrt{s}

$\pi_1(1600)$ MASS

VALUE (MeV) **EVTS** DOCUMENT ID

TECN COMMENT

1661⁺ 15 OUR AVERAGE Error includes scale factor of 1.2.

$\pi_1(1600)$ WIDTH

VALUE (MeV) **EVTS** DOCUMENT ID

TECN COMMENT

240± 50 OUR AVERAGE

Error includes scale factor of 1.7. See the ideogram below.

$\pi_1(1600)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\pi\pi\pi$	seen
Γ ₂	$\rho^{0}\pi^{-}$	seen
Γ ₃	$f_2(1270)\pi^-$	not seen
Γ ₄ Γ ₅	$b_1(1235)\pi \\ \eta'(958)\pi^-$	seen
Γ_6	$\eta \pi$	Seeii
Γ ₇	$f_1(1285)\pi$	seen

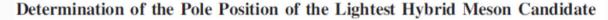
 $\pi_1(1400)$

 $I^{G}(J^{PC}) = 1^{-}(1^{-})$

$\pi_1(1400)$ MASS

EVTS DOCUMENT ID TECN CHG COMMENT 1354 ±25 OUR AVERAGE Error includes scale factor of 1.8. See the ideogram below.

π_1 (1400) WIDTH

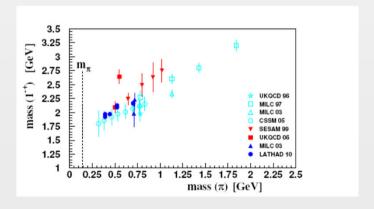

VALUE (MeV) **EVTS** 330 ±35 OUR AVERAGE DOCUMENT ID TECN CHG COMMENT

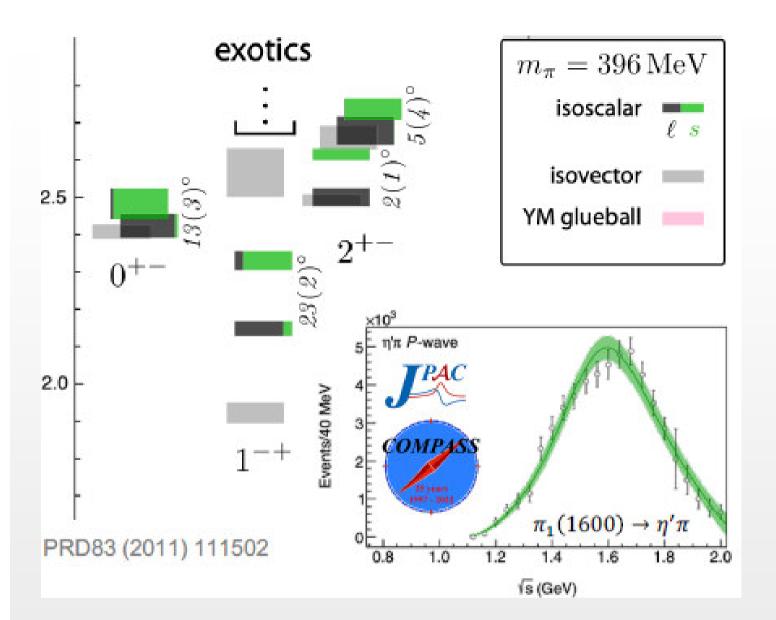
$\pi_1(1400)$ DECAY MODES

Mode Fraction (Γ_i/Γ) $\eta \pi^0$ seen $\eta \pi^$ seen

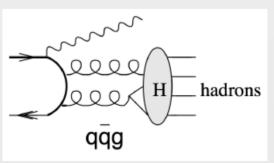
A unique I=1 hybrid state

PHYSICAL REVIEW LETTERS 122, 042002 (2019)

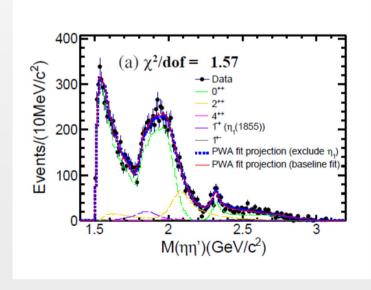

A. Rodas,^{1,*} A. Pilloni,^{2,3,†} M. Albaladejo,^{2,4} C. Fernández-Ramírez,⁵ A. Jackura,^{6,7} V. Mathieu,² M. Mikhasenko,⁸ J. Nys,⁹ V. Pauk,¹⁰ B. Ketzer,⁸ and A. P. Szczepaniak^{2,6,7}


Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, $\pi_1(1400)$ and $\pi_1(1600)$, which couple separately to $\eta\pi$ and $\eta'\pi$. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the $\eta^{(\prime)}\pi$ system by the COMPASS Collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S matrix. We provide a robust extraction of a single exotic π_1 resonant pole, with mass and width $1564 \pm 24 \pm 86$ and $492 \pm 54 \pm 102$ MeV, which couples to both $\eta^{(\prime)}\pi$ channels. We find no evidence for a second exotic state. We also provide the resonance parameters of the $a_2(1320)$ and $a_2'(1700)$.

 π 1(1600) and π 1(1400) are the same state (in agreement with various models and lattice QCD)


C. Meyer and E. Swanson, Hybrid Mesons, Prog. Part. Nucl. Phys. 82 (2015) 21 [arXiv:1502.07276 [hep-ph]].

New experimental finding: η1(1855)



Observation of an isoscalar resonance with exotic $J^{PC}=1^{-+}$ quantum numbers in $J/\psi \to \gamma \eta \eta'$

M. Ablikim¹, M. N. Achasov^{10,b}, P. Adlarson⁶⁸, S. Ahmed¹⁴, M. Albrecht⁴, R. Aliberti²⁸, A. Amoroso^{67A,67C}, M. R. An³²,

Using a sample of $(10.09\pm0.04)\times10^9~J/\psi$ events collected with the BESIII detector operating at the BEPCII storage ring, a partial wave analysis of the decay $J/\psi\to\gamma\eta\eta'$ is performed. The first observation of an isoscalar state with exotic quantum numbers $J^{PC}=1^{-+}$, denoted as $\eta_1(1855)$, is reported in the process $J/\psi\to\gamma\eta_1(1855)$ with $\eta_1(1855)\to\eta\eta'$. Its mass and width are measured to be $(1855\pm9^{+6}_{-1})~{\rm MeV}/c^2$ and $(188\pm18^{+3}_{-8})~{\rm MeV}$, respectively, where the first uncertainties are statistical and the second are systematic, and its statistical significance is estimated to be larger than 19σ .

Phys.Rev.Lett. 129 (2022) 19, 192002 2202.00621 [hep-ex]

A nonet of hybrid states?

Physics Letters B 834 (2022) 137478

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

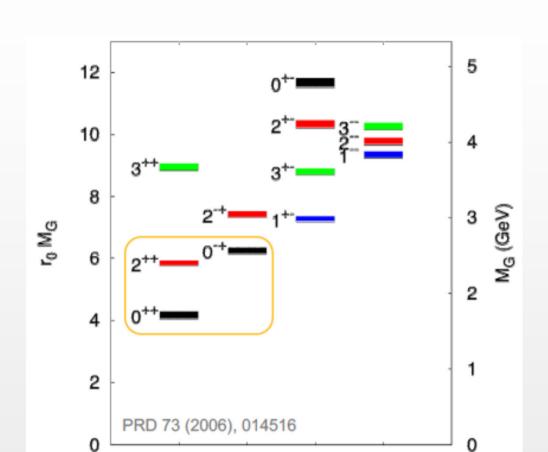
The phenomenology of the exotic hybrid nonet with $\pi_1(1600)$ and $\eta_1(1855)$

Vanamali Shastry a,*, Christian S. Fischer b,c, Francesco Giacosa a,d

arXiv:2203.04327

Beides π 1(1600) and η 1(1855), we expect also: K1(1750) and η 1(1660). The last two not yet seen.

	M (MeV)	Γ (MeV)
K_1^{hyb}	1761	312 ± 97
1	1/61	170 ± 65
η_1^L	1661	81 ± 15
71		83 ± 16
n_{\cdot}^{H}	1855	259 ± 92
71		157 ± 68


Table 7The partial widths and branching ratios of various decay channels and the total width for the hybrid kaon K_+^{hyb} (1750). We have assumed the mass of the state to be 1761 MeV [44].

Channel	Width (MeV)		Channel	Width (MeV)		
	Set-1	Set-2		Set-1	Set-2	
$\Gamma_{K_1(1270)\pi}$	125 ± 42	48 ± 25	$\Gamma_{\rho K}$	2.18 ± 0.56	2.19 ± 0.57	
$\Gamma_{K_1(1400)\pi}$	103 ± 45	98 ± 43	$\Gamma_{\omega K}$	$\boldsymbol{0.82 \pm 0.21}$	$\boldsymbol{0.82 \pm 0.21}$	
$\Gamma_{h_1(1170)K}$	$\boldsymbol{1.53 \pm 0.28}$	$\boldsymbol{1.37 \pm 0.24}$	$\Gamma_{\phi K}$	$\boldsymbol{0.49 \pm 0.12}$	$\boldsymbol{0.49 \pm 0.13}$	
$\Gamma_{\eta K}$	$\boldsymbol{0.29 \pm 0.07}$	$\boldsymbol{0.29 \pm 0.07}$	$\Gamma_{K^*\pi}$	$\boldsymbol{0.67 \pm 0.17}$	$\boldsymbol{0.67 \pm 0.17}$	
$\Gamma_{\eta'K}$	$\boldsymbol{2.77 \pm 0.62}$	$\boldsymbol{2.81 \pm 0.62}$	$\Gamma_{K^*\eta}$	$\boldsymbol{0.30 \pm 0.08}$	$\boldsymbol{0.30 \pm 0.08}$	
$\Gamma_{\rho K^*}$	$\boldsymbol{0.045 \pm 0.016}$	$\boldsymbol{0.047 \pm 0.016}$	$\Gamma_{\omega K^*}$	$\boldsymbol{0.011 \pm 0.004}$	$\boldsymbol{0.012 \pm 0.004}$	
$\Gamma_{a_1 K}$	11.0 ± 2.32	11.3 ± 2.35	Γ_{b_1K}	64 ± 14	3.11 ± 2.88	
			Γ_{tot}	312 ± 97	170 ± 65	

Table 6The partial widths and branching ratios of various decay channels and the total width of the η_1^L (left) and the η_1 (1855) (right) for $\theta_h = 15^\circ$. This corresponds to the "Scenario-2" discussed in the text.

Channel	Width (MeV)		Channel	Width (MeV)		
	Set-1	Set-2		Set-1	Set-2	
$\Gamma_{a_1\pi}$	80 ± 15	82 ± 16	$\Gamma_{K_1(1270)K}$	253 ± 92	151 ± 67	
Γ_{K^*K}	$\boldsymbol{0.29 \pm 0.075}$	$\boldsymbol{0.29 \pm 0.075}$	Γ_{K^*K}	$\boldsymbol{1.45 \pm 0.37}$	$\boldsymbol{1.46 \pm 0.38}$	
$\Gamma_{\eta'\eta}$	$\boldsymbol{0.41 \pm 0.09}$	$\boldsymbol{0.41 \pm 0.09}$	$\Gamma_{\eta'\eta}$	$\boldsymbol{2.28 \pm 0.51}$	2.31 ± 0.51	
$\Gamma_{K_1(1270)K}$	0	0	$\Gamma_{a_1\pi}$	0	0	
$\Gamma_{\rho\rho}$	$\boldsymbol{0.081 \pm 0.028}$	$\boldsymbol{0.082 \pm 0.029}$	$\Gamma_{ ho ho}$	0	0	
$\Gamma_{K^*K^*}$	0	0	$\Gamma_{K^*K^*}$	$\boldsymbol{0.075 \pm 0.027}$	0.077 ± 0.028	
$\Gamma_{\omega\phi}$	0	0	$\Gamma_{\omega\phi}$	$\sim 10^{-4}$	$\sim 10^{-4}$	
$\Gamma_{f_1\eta}$	0	0	$\Gamma_{f_1\eta}$	2.15 ± 0.56	2.21 ± 0.57	
Γ_{tot}	81 ± 15	83 ± 16	Γ_{tot}	259 ± 92	157 ± 68	

Light glueballs

Scalar glueball

PHYSICAL REVIEW D 90, 114005 (2014)

Is $f_0(1710)$ a glueball?

Stanislaus Janowski, ¹ Francesco Giacosa, ^{1,2} and Dirk H. Rischke ¹

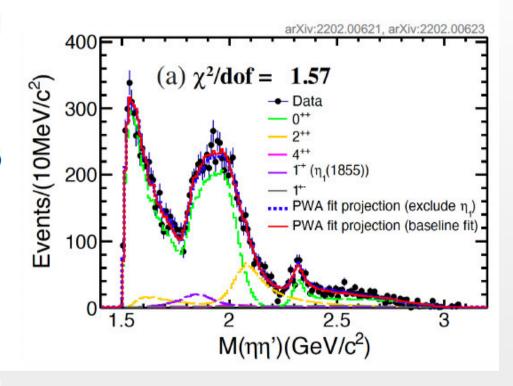

¹Institute for Theoretical Physics, Goethe University,

Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany

²Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland (Received 26 August 2014; published 2 December 2014)

PRL 110, 021601 (2013)	PHYSICAL F	REVIEW	LETTERS	week ending 11 JANUARY 2
Scala	ar Glueball in Radia	ative J/ψ	Decay on the La	attice
Long-Cheng Gu	ii, ^{1,2} Ying Chen, ^{1,2,*} Gar Yi-Bo Yang, ^{1,}			Jian-Ping Ma, ⁶
	(CLQCI	D Collaborat	ion)	
² Theoretical Center for Sci ³ Department o ⁴ School of Physics and Cent ⁵ School of ⁶ Institute of Theoretica	f Physics, Qufu Normal Un	ademy of Scieniversity, Qufus, Peking Universe, Tianjin 300 or Sciences, rsity, Zhejiang	ences, Beijing 100049, 1273165, People's Rep 18 Sersity, Beijing 100871 1071, People's Republio 18 Beijing 100190, Peop 13 10027, People's Rep	People's Republic of China public of China , People's Republic of China c of China ple's Republic of China
QCD on anisotropic spacings. With the pure gauge scalar gi $3.8(9) \times 10^{-3}$. By co	n the radiative decay of J/- lattices. The continuum e- esults of these form factors lueball is predicted to be o mparing with experiments glueball than other related	xtrapolation is s, the partial v 0.35(8) keV, s, out results	is carried out by using width of J/ψ radiative which corresponds to indicate that $f_0(1710)$	two different lattice ely decaying into the a branching ratio of

$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(8.5	$^{+1.2}_{-0.9}$	$) \times 10^{-4}$
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(4.0	±1.0	$) \times 10^{-4}$
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	(3.1	± 1.0	$) \times 10^{-4}$
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	(2.4	$^{+1.2}_{-0.7}$	$) \times 10^{-4}$


$$\gamma f_0(1500) \rightarrow \gamma \pi \pi$$
 (1.01 ±0.32) × 10⁻⁴
 $\gamma f_0(1500) \rightarrow \gamma \eta \eta$ (1.7 $^{+0.6}_{-1.4}$) × 10⁻⁵

Recent BES results

Radiative J/ψ decays

- scalar glueball decays to $\eta\eta'$ expected to be suppressed $\frac{B(G \to \eta\eta')}{B(G \to \pi\pi)} < 0.04$
 - PRD 92, 121902 (2015)
- significant $f_0(1500)$ contribution, but no $f_0(1710)$ (there is a small $f_0(1810)$ in the fit)
- $\frac{B(f_0(1500)\to\eta\eta')}{B(f_0(1500)\to\pi\pi)} = (8.96^{+2.95}_{-2.87})\times10^{-2}$,
- $\frac{B(f_0(1710)\to\eta\eta')}{B(f_0(1710)\to\pi\pi)}$ < 1.61×10⁻³ (90% CL)
- $\frac{B(f_0(1810) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} = (1.39^{+0.62}_{-0.52}) \times 10^{-2}$

Nils Hüsken on behalf of the BESIII collaboration

Workshop: Recent results and perspectives in hadron physics Orsay, October 17th, 2022

Pseudoscalar glueball

PHYSICAL REVIEW LETTERS 129, 042001 (2022)

Observation of a State X(2600) in the $\pi^+\pi^-\eta'$ System in the Process $J/\psi \to \gamma \pi^+\pi^-\eta'$

 $\pi^+\pi^-$ invariant mass spectrum. A simultaneous fit on the $\pi^+\pi^-\eta'$ and $\pi^+\pi^-$ invariant mass spectra with the two η' decay modes indicates that the mass and width of the X(2600) state are $2618.3 \pm 2.0^{+16.3}_{-1.4}~{\rm MeV}/c^2$ and $195 \pm 5^{+26}_{-17}~{\rm MeV}$, where the first uncertainties are statistical, and the second systematic.

PHYSICAL REVIEW D 87, 054036 (2013)

Decay of the pseudoscalar glueball into scalar and pseudoscalar mesons

Walaa I. Eshraim, Stanislaus Janowski, Francesco Giacosa, and Dirk H. Rischke^{1,2}

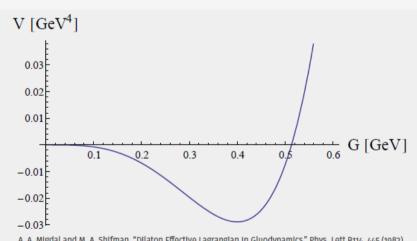
Quantity	$M_{\tilde{G}} = 2.6 \text{ GeV}$
$\Gamma_{\tilde{G} o KK\eta}/\Gamma_{\tilde{G}}^{ ext{tot}}$	0.049
$\Gamma_{ ilde{G} ightarrow KK\eta'}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.019
$\Gamma_{ ilde{G} ightarrow\eta\eta\eta}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.016
$\Gamma_{ ilde{G} ightarrow\eta\eta^\prime}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.0017
$\Gamma_{ ilde{G} ightarrow\eta\eta'\eta'}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.00013
$\Gamma_{\tilde{G} o KK\pi}/\Gamma_{\tilde{G}}^{ ext{tot}}$	0.47
$\Gamma_{ ilde{G} ightarrow\eta\pi\pi}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.16
$\Gamma_{ ilde{G} ightarrow\eta'\pi\pi}/\Gamma_{ ilde{G}}^{ ext{tot}}$	0.095

glueball-glueball scattering: a new state?

Eur. Phys. J. C (2022) 82:487 https://doi.org/10.1140/epjc/s10052-022-10403-z

THE EUROPEAN PHYSICAL JOURNAL C

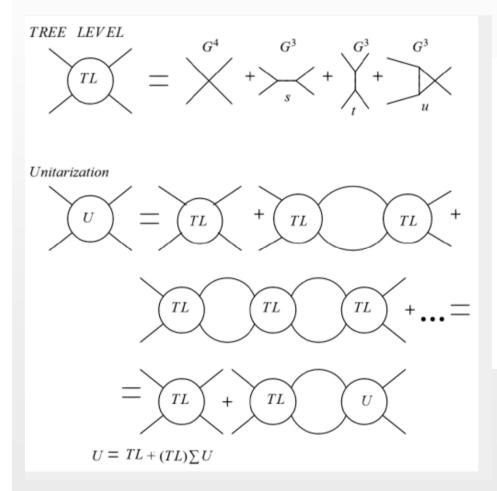
Regular Article - Theoretical Physics

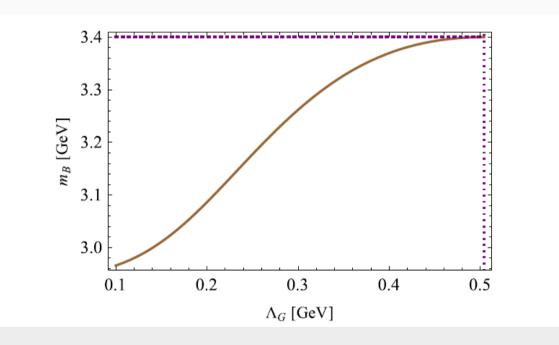

Glueball-glueball scattering and the glueballonium

Francesco Giacosa^{1,2}, Alessandro Pilloni^{3,4}, Enrico Trotti^{1,a}

$$\mathcal{L}_{\text{dil}} = \frac{1}{2} (\partial_{\mu} G)^2 - V(G),$$

with


$$V(G) = \frac{1}{4} \frac{m_G^2}{\Lambda_G^2} \left(G^4 \ln \left| \frac{G}{\Lambda_G} \right| - \frac{G^4}{4} \right).$$



Glueballonium mass

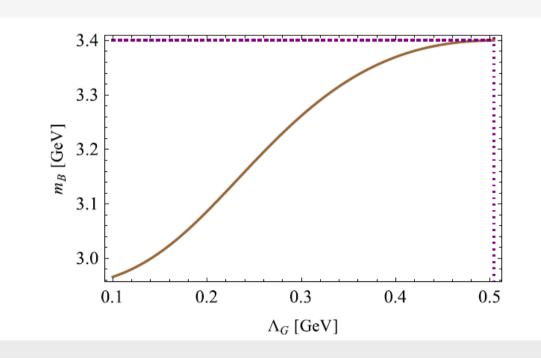
$$V(G) = V(\Lambda_G) + \frac{1}{2} m_G^2 G^2 + \frac{1}{3!} \left(5 \frac{m_G^2}{\Lambda_G} \right) G^3 + \frac{1}{4!} \left(11 \frac{m_G^2}{\Lambda_G^2} \right) G^4 + \frac{1}{5!} \left(6 \frac{m_G^2}{\Lambda_G^3} \right) G^5 + \dots$$

Can one see that? In YM-lattice, probably yes. In experiment? Hard, but...

Dulcis in fundo: scalar sector

Eur. Phys. J. C (2022) 82:487 https://doi.org/10.1140/epjc/s10052-022-10403-z THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Theoretical Physics


Glueball-glueball scattering and the glueballonium

Francesco Giacosa^{1,2}, Alessandro Pilloni^{3,4}, Enrico Trotti^{1,a}

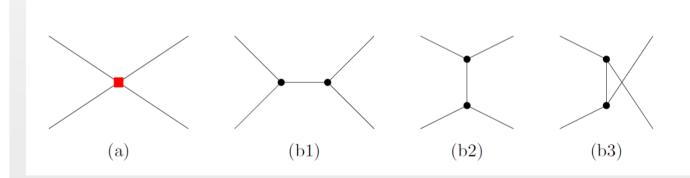
$$\mathcal{L}_{\text{dil}} = \frac{1}{2} (\partial_{\mu} G)^2 - V(G),$$

with

$$V(G) = \frac{1}{4} \frac{m_G^2}{\Lambda_G^2} \left(G^4 \ln \left| \frac{G}{\Lambda_G} \right| - \frac{G^4}{4} \right).$$

Higgsonium?

$$V(H) = V(v) + \frac{m_H^2}{2!}(H - v)^2 + \frac{g}{3!}(H - v)^3 + \frac{\lambda}{4!}(H - v)^4 + \frac{g_{5H}}{5!}(H - v)^5 + \dots$$
$$= V(v) + \frac{m_H^2}{2!}h^2 + \frac{g}{3!}h^3 + \frac{\lambda}{4!}h^4 + \frac{g_{5H}}{5!}h^5 + \dots$$

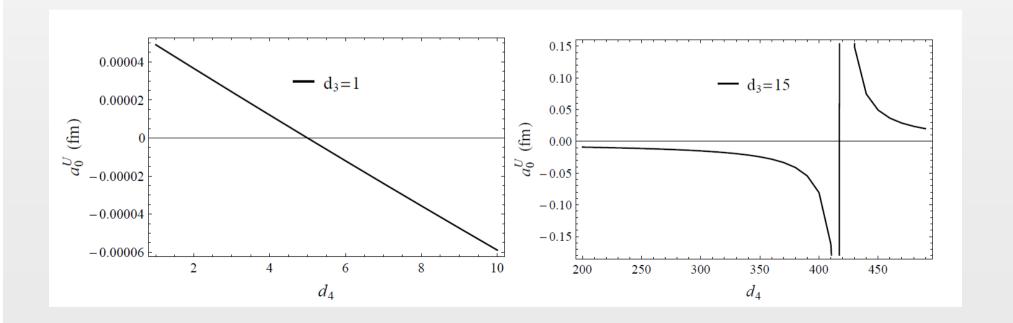

$$g = d_3 \frac{3m_H^2}{v} \quad \lambda = d_4 \frac{3m_H^2}{v^2}$$

$$i\mathcal{M}_a = -i\lambda$$

$$i\mathcal{M}_{b1} = -ig^2 \frac{1}{s - m_H^2 + i\epsilon}$$

$$i\mathcal{M}_{b2} = -ig^2 \frac{1}{t - m_H^2 + i\epsilon}$$

$$i\mathcal{M}_{b3} = -ig^2 \frac{1}{u - m_H^2 + i\epsilon}$$


Higgsonium/2

$$a_0^{TL} = \frac{1}{32\pi m_H} A_0(s = 4m_H^2) = \frac{-\lambda + \frac{5g^2}{3m_H^2}}{32\pi m_H} = (4.86 \pm 0.01) \times 10^{-5} \text{ fm}.$$

$$a_2^{TL} = \frac{g^2}{30\pi m_H^7} = \frac{3d_3^2}{10\pi v^2 m_H^3} \stackrel{\text{SM}}{=} 2.4 \times 10^{-16} \text{ fm },^5$$

$$a_4^{TL} = \frac{8g^2}{315\pi m_H^{11}} = \frac{8d_3^2}{35\pi v^2 m_H^7} \stackrel{\text{SM}}{=} 1.1 \times 10^{-27} \text{ fm}^9 .$$

Beyibd Breit-Wigner

Eur. Phys. J. A (2021) 57:336 https://doi.org/10.1140/epja/s10050-021-00641-2 THE EUROPEAN
PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

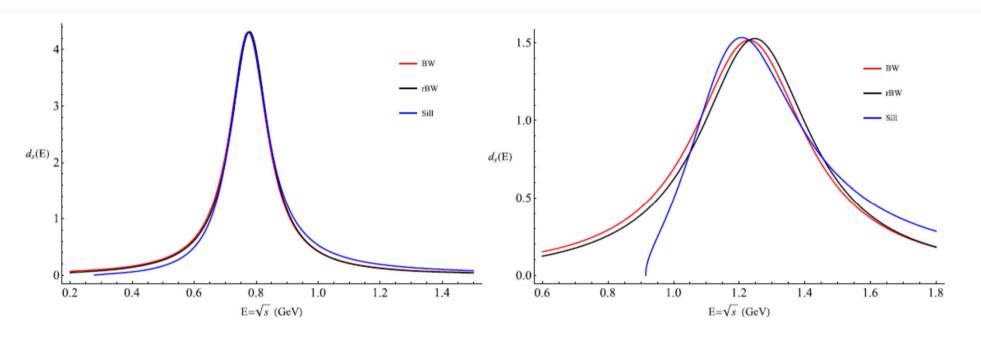
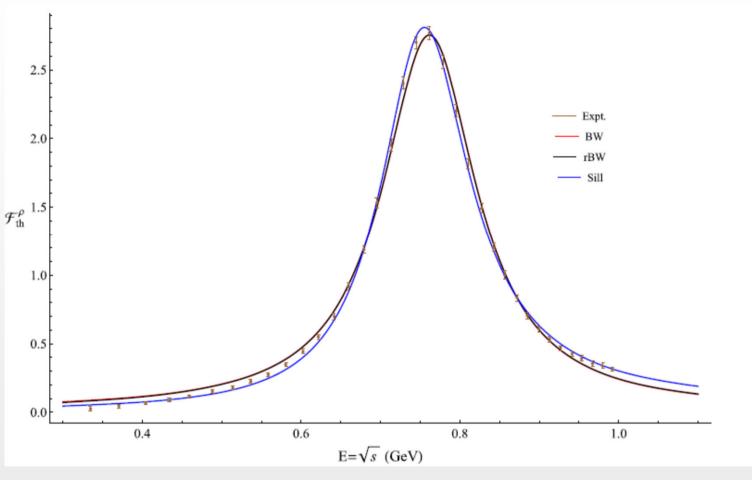
A simple alternative to the relativistic Breit-Wigner distribution

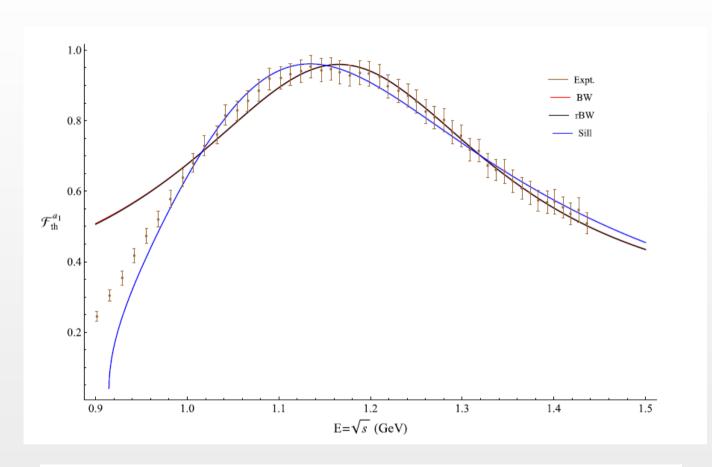
Francesco Giacosa^{1,2}, Anna Okopińska¹, Vanamali Shastry^{1,a}

$$d_S^{\rm BW}(E) = \frac{\Gamma}{2\pi} \frac{1}{(E - M)^2 + \frac{\Gamma^2}{4}}$$

$$d_S^{\text{rBW}}(E) = \frac{2E}{\pi} \frac{M\Gamma}{(E^2 - M^2)^2 + (M\Gamma)^2} \theta(E)$$

$$d_S^{Sill}(E) = \frac{2E}{\pi} \frac{\sqrt{E^2 - E_{th}^2 \tilde{\Gamma}}}{(E^2 - M^2)^2 + (\sqrt{E^2 - E_{th}^2 \tilde{\Gamma}})^2} \theta(E - E_{th})$$


Fig. 1 Illustrative comparison of the four distributions discussed in the paper. Left panel, peak far away from the threshold (ρ (770), $M=0.775~{\rm GeV},~\Gamma=0.1478~{\rm GeV},~{\rm and}~E_{th}=2m_\pi$); right panel, peak near the threshold ($a_1(1260),~M=1.230~{\rm GeV},~\Gamma=0.5~{\rm GeV},~{\rm and}~E_{th}=m_\rho+m_\pi$)

Distribution	M (MeV)	Γ (MeV)	$\chi^2/d.o.f$	$\sqrt{s_{pole}}(\text{MeV})$
Nonrelativistic BW	761.64 ± 0.32	144.6 ± 1.3	10.16	761.6 – <i>i</i> 72.3
Relativistic BW	758.1 ± 0.33	145.2 ± 1.3	9.42	761.5 - i 72.3
Sill	755.82 ± 0.33	137.3 ± 1.1	3.52	751.7 - i 68.6

Distribution	M (MeV)	Γ (MeV)	$\chi^2/\text{d.o.f}$	$\sqrt{s_{pole}}(\text{MeV})$
Nonrelativistic BW	1165.6 ± 1.2	415 ± 15	4.31	$1166 - i\ 208$
Relativistic BW	1146.5 ± 1.6	424 ± 16	4.25	$1165 - i\ 209$
Sill	1181.3 ± 3.4	539 ± 27	3.52	$1046 - i\ 250$

Conclusions and outlook

Many nonets fit well in the quark-antiquark picture, but...

- axial-tensor mesons basically unknown;
- pseudotensor mesons, is there a large isoscalar mixing?
- vector mesons: which is the orbitally excited φ meson?

Unconventional mesons:

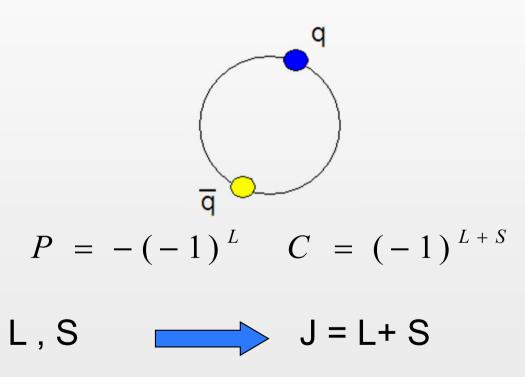
- hybrid mesons: a new nonet?
- Glueballonium (possible), Higgsonium (improbable)

Outlook:

tensor glueball (ongoing)

Thanks

Back-up slides


Conventional mesons

Quark: u,d,s,... R,G,B

Quark-antiquark bound states: conventional mesons

$$|color\rangle = \sqrt{1/3} (\overline{R}R + \overline{B}B + \overline{G}G)$$

$$L = S = 0 \rightarrow J^{PC} = 0^{-+}$$
 pseudoscalar mesons

$$\left|\pi^{+}\right\rangle = \left|u\overline{d}\right\rangle \left|space:L=0\right\rangle \left|spin:S=0\right\rangle \left|\overline{R}R+\overline{B}B+\overline{G}G\right\rangle$$

$$|K^+\rangle = |u\overline{s}\rangle|space: L = 0\rangle|spin: S = 0\rangle|\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

. . .

$$|D^{0}\rangle = |u\overline{c}\rangle|space : L = 0\rangle|spin : S = 0\rangle|\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

. . .

$$L = 0$$
, $S = 1 \rightarrow J^{PC} = 1^{--}$ vector mesons

$$\left|\rho^{+}\right\rangle = \left|u\overline{d}\right\rangle \left|space:L=0\right\rangle \left|spin:S=1\right\rangle \left|\overline{R}R+\overline{B}B+\overline{G}G\right\rangle$$

• • •

$$\left| K^* (892)^+ \right\rangle = \left| u \overline{s} \right\rangle \left| \text{space} : L = 0 \right\rangle \left| \text{spin} : S = 1 \right\rangle \left| \overline{R}R + \overline{B}B + \overline{G}G \right\rangle$$

. . .

$$\left|D^{*_0}\right\rangle = \left|u\overline{c}\right\rangle \left|space:L=0\right\rangle \left|spin:S=1\right\rangle \left|\overline{R}R+\overline{B}B+\overline{G}G\right\rangle$$

. . .

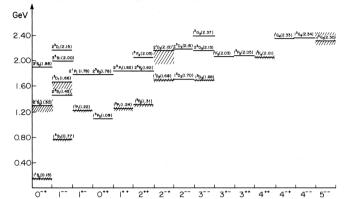
$$|j/\Psi\rangle = |c\overline{c}\rangle|space: L = 0\rangle|spin: S = 1\rangle|\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

$$L = S = 1 \rightarrow J^{PC} = 0^{++}$$
 scalar mesons

$$|\sigma\rangle = |u\overline{u} + d\overline{d}\rangle |\operatorname{space} : L = 1\rangle |\operatorname{spin} : S = 1\rangle |\overline{R}R + \overline{B}B + \overline{G}G\rangle$$

corresponds to the resonance $f_0(1370)$.

. . .


• • •

$$\left|\chi_{c0}(1S)\right\rangle = \left|c\overline{c}\right\rangle \left|space:L=1\right\rangle \left|spin:S=1\right\rangle \left|\overline{R}R+\overline{B}B+\overline{G}G\right\rangle$$

Quark model(s) and their QFT extensions

Mesons in a Relativized Quark Model with Chromodynamics S. Godfrey, N. Isgur Phys.Rev. D32 (1985) **189-231**

QCD phenomenology based on a chiral effective Lagrangian T. Hatsuda, T. Kunihiro Phys.Rept. **247** (1994) 221-367

The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states

R. Alkofer, L. von Smekal Phys.Rept. **353** (2001) 281

Baryons as relativistic three-quark bound states G. Eichmann et al. Progr. Part. Nucl. Phys. **91** (2016) 1

NJL: quark-based model with chiral symmetry and SSB chiral condensate Effective quark mass Mesons as quarkonia (pion: ok)

DS:
quarks and gluons propagators
from QCD
Condensates
Effective quark and gluon masses
Spectra of mesons as quarkonia
(pion: ok) and baryons as qqq states

Francesco Giacosa

Quark-antiquark currents

Meson	$n^{2S+1}L_J$	J^{PC}	S	L	Hermitian quark current operators
pseudoscalar	$1^{1}S_{0}$	0-+	0	0	$P_{ij} = \bar{q}_j i\gamma^5 q_i$
vector	$1^{3}S_{1}$	1	1		$V^{\mu}_{ij} = \bar{q}_j \gamma^{\mu} q_i$
pseudovector	$1^{1}P_{1}$	1+-	0		$P_{ij}^{\mu} = \bar{q}_j \gamma^5 \overleftrightarrow{\partial}^{\mu} q_i$
scalar	$1^{3}P_{0}$	0++	1	1	$S_{ij} = \bar{q}_j q_i$
axial vector	$1^{3}P_{1}$	1++	1	1	$A^{\mu}_{ij} = \bar{q}_j \gamma^5 \gamma^{\mu} q_i$
tensor	$1^{3}P_{2}$	2++	1		$X_{ij}^{\mu\nu} = \bar{q}_j i \left[\gamma^{\mu} \overleftrightarrow{\partial}^{\nu} + \gamma^{\nu} \overleftrightarrow{\partial}^{\mu} - \frac{2}{3} \tilde{G}^{\mu\nu} \overleftrightarrow{\phi} \right] q_i$
pseudotensor	$1^{1}D_{2}$	2-+	0		$T_{ij}^{\mu\nu} = \bar{q}_j i \left[\gamma^5 \overleftrightarrow{\partial}^{\mu} \overleftrightarrow{\partial}^{\nu} - \frac{2}{3} \tilde{G}^{\mu\nu} \overleftrightarrow{\partial}^{\alpha} \overleftrightarrow{\partial}^{\alpha} \right] q_i$
excited vector	$1^{3}D_{1}$	1	1	2	$S_{ij}^{\mu} = \bar{q}_j \stackrel{\longleftrightarrow}{\partial}^{\mu} q_i$
axial tensor	$1^{3}D_{2}$	2	1		$B_{ij}^{\mu\nu} = \bar{q}_j i \left[\gamma^5 \gamma^{\mu} \overleftrightarrow{\partial}^{\nu} + \gamma^5 \gamma^{\nu} \overleftrightarrow{\partial}^{\mu} - \frac{2}{3} \tilde{G}^{\mu\nu} \gamma^5 \overleftrightarrow{\partial} \right] q_i$
spin-3 tensor	$1^{3}D_{3}$	3	1		• • •

Decays of J=3-mesons

TABLE III. Effective relativistic interaction terms describing the strong decays of mesons with $J^{PC} = 3^{--}$.

Decay mode	Interaction Lagrangians
$3^{} \rightarrow 0^{-+} + 0^{-+}$	$\mathcal{L}_{w_3pp} = g_{w_3pp} \mathrm{tr}[W_3^{\mu u ho}[P,(\partial_\mu\partial_ u\partial_ ho P)]]$
$3^{} \rightarrow 0^{-+} + 1^{}$	$\mathcal{L}_{w_3v_1p} = g_{w_3v_1p} \varepsilon^{\mu\nu\rho\sigma} \mathrm{tr}[W_{3,\mu\alpha\beta}\{(\partial_{\nu}V_{1,\rho}),(\partial^{\alpha}\partial^{\beta}\partial_{\sigma}P)\}_{+}]$
$3^{} \rightarrow 0^{-+} + 2^{++}$	$\mathcal{L}_{w_3 a_2 p} = g_{w_3 a_2 p} \varepsilon_{\mu\nu\rho\sigma} \mathrm{tr}[W_3{}^{\mu}{}_{\alpha\beta}[(\partial^{\nu}A_2^{\rho\alpha}),(\partial^{\sigma}\partial^{\beta}P)]_{-}]$
$3^{} \rightarrow 0^{-+} + 1^{+-}$	$\mathcal{L}_{w_3b_1p} = g_{w_3b_1p} \mathrm{tr}[W_3^{\mu\nu\rho} \{B_{1,\mu}, (\partial_{\nu}\partial_{\rho}P)\}_{+}]$
$3^{} \rightarrow 0^{-+} + 1^{++}$	$\mathcal{L}_{w_3a_1p}=g_{w_3a_1p} ext{tr}[W_3^{\mu u ho}[A_{1,\mu},(\partial_ u\partial_ ho P)]]$
3 → 1 + 1	$\mathcal{L}_{w_3v_1v_1} = g_{w_3v_1v_1} \mathrm{tr}[W_3^{\mu\nu\rho}[(\partial_{\mu}V_{1, u}),V_{1, ho}]_{-}]$

$$W_3^{\mu\nu\rho} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{3,N}^{\mu\rho} + \rho_3^{0\mu\nu\rho}}{\sqrt{2}} & \rho_3^{+\mu\nu\rho} & K_3^{+\mu\nu\rho} \\ \rho_3^{-\mu\nu\rho} & \frac{\omega_{3,N}^{\mu\nu\rho} - \rho_3^{0\mu\nu\rho}}{\sqrt{2}} & K_3^{0\mu\nu\rho} \\ K_3^{-\mu\nu\rho} & \bar{K}_3^{0\mu\nu\rho} & \omega_{3,S}^{\mu\nu\rho} \end{pmatrix}$$

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & \bar{K}^0 & \eta_S \end{pmatrix}$$

$$V_1^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{1,N}^{\mu} + \rho_1^{0\mu}}{\sqrt{2}} & \rho_1^{+\mu} & K_1^{*+\mu} \\ \rho_1^{-\mu} & \frac{\omega_{1,N}^{\mu} - \rho_1^{0\mu}}{\sqrt{2}} & K_1^{*0\mu} \\ K_1^{*-\mu} & \bar{K}_1^{*0\mu} & \omega_{1,S}^{\mu} \end{pmatrix}$$

TABLE IV. Decay amplitudes for different decay modes.

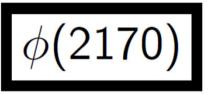
Decay mode	$\frac{1}{7} \mathcal{M} ^2$
$3^{} \rightarrow 0^{-+} + 0^{-+}$	$g_{w_3pp}^2 \frac{2}{35} \vec{k}_{p^{(1)},p^{(2)}} ^6$
$3^{} \rightarrow 0^{-+} + 1^{}$	$g_{w_3v_1p}^2 \frac{8}{105} \vec{k}_{v_1,p} ^6 m_{w_3}^2$
$3^{} \rightarrow 0^{-+} + 2^{++}$	$g_{w_3 a_2 p}^2 \frac{2}{105} \vec{k}_{a_2,p} ^4 \frac{m_{w_3}^2}{m_{a_2}^2} (2 \vec{k}_{a_2,p} ^2 + 7m_{a_2}^2)$
$3^{} \rightarrow 0^{-+} + 1^{+-}$	$g_{w_3b_1p}^2 \frac{2}{105} \vec{k}_{b_1,p} ^4 (7 + 3 \frac{ \vec{k}_{b_1,p} ^2}{m_{b_1}^2})$
$3^{} \rightarrow 0^{-+} + 1^{++}$	$g_{w_3a_1p}^2 \frac{2}{105} \vec{k}_{a_1,p} ^4 (7 + 3 \frac{ \vec{k}_{a_1,p} ^2}{m_{a_1}^2})$
3 → 1 + 1	$g_{w_3v_1v_1}^2 \tfrac{1}{105} (m_{v_1^{(1)}}^2 m_{v_1^{(2)}}^2)^{-1} \vec{k}_{v_1^{(1)}, v_2^{(2)}} ^2 [6 \vec{k}_{v_1^{(1)}, v_1^{(2)}} ^4$
	$+35 m_{v_1^{(1)}}^2 m_{v_1^{(2)}}^2 + 14 \vec{k}_{v_1^{(1)}, v_1^{(2)}} ^2 (m_{v_1^{(1)}}^2 + m_{v_1^{(2)}}^2)]$

Tensor and axial-tensor: the Lagrangian

$$2^{++}, \, {}^{3}P_{2} \quad \begin{cases} a_{2}(1320) & V_{\mu\nu}^{ij} = \frac{1}{2}\bar{q}^{j}(\gamma_{\mu}i\overset{\leftrightarrow}{D_{\mu}} + \cdots)q^{i} & L_{\mu\nu} = V_{\mu\nu} + A_{\mu\nu} & L_{\mu\nu} \to U_{L}L_{\mu\nu}U_{L}^{\dagger} \\ K_{2}^{*}(1430) & (L_{\mu\nu}^{ij} = \bar{q}_{L}^{j}(\gamma_{\mu}i\overset{\leftrightarrow}{D_{\nu}} + \cdots)q^{i}) & (L_{\mu\nu}^{ij} = \bar{q}_{L}^{i}(\gamma_{\mu}i\overset{\leftrightarrow}{D_{\nu}} + \cdots)q^{i}) \end{cases}$$

$$2^{--}, \, {}^{3}D_{2} \quad \begin{cases} \rho_{2}(?) & A_{\mu\nu}^{ij} = \frac{1}{2}\bar{q}^{j}(\gamma^{5}\gamma_{\mu}i\overset{\leftrightarrow}{D_{\nu}} + \cdots)q^{i} & R_{\mu\nu} = V_{\mu\nu} - A_{\mu\nu} \\ K_{2}(1820) & (R_{\mu\nu}^{ij} = \bar{q}_{R}^{j}(\gamma_{\mu}\overset{\leftrightarrow}{D_{\nu}} + \cdots)q^{i}) \end{cases} \qquad R_{\mu\nu} \to U_{R}R_{\mu\nu}U_{R}^{\dagger}$$

$$(R_{\mu\nu}^{ij} = \bar{q}_{R}^{j}(\gamma_{\mu}\overset{\leftrightarrow}{D_{\nu}} + \cdots)q_{R}^{i}) \qquad R_{\mu\nu} \to U_{R}R_{\mu\nu}U_{R}^{\dagger}$$


$$\mathcal{L}_{g_2^{\text{ten}}} = \frac{g_2^{\text{ten}}}{2} \left(\text{Tr} \left[\mathbf{L}_{\mu\nu} \{ L^{\mu}, L^{\nu} \} \right] + \text{Tr} \left[\mathbf{R}_{\mu\nu} \{ R^{\mu}, R^{\nu} \} \right] \right)$$

$$\begin{array}{c} 2^{++} \longrightarrow 0^{-+} + 0^{-+} \; ; \\ 2^{--} \longrightarrow 0^{-+} + 1^{--} \; . \end{array}$$

Also in this case: small isoscalar mixing angle

$$\begin{pmatrix} f_2(1270) \\ f_2'(1525) \end{pmatrix} = \begin{pmatrix} \cos \beta_T & \sin \beta_T \\ -\sin \beta_T & \cos \beta_T \end{pmatrix} \begin{pmatrix} f_{2,N} \\ f_{2,S} \end{pmatrix} \qquad \beta_T = (3.16 \pm 0.81)^{\circ}$$

Citation: R.L. Workman et al. (Particle Data Group), to be published (2022)

$$I^G(J^{PC}) = 0^-(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

ϕ (2170) MASS

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

2162 ± 7 OUR AVERAGE Error includes scale factor of 1.1.

φ(2170) WIDTH

VALUE (MeV) EVTS DOCUMENT ID TECN C

100 +31 OUR AVERAGE Error includes scale factor of 2.5.

Excited vector mesons: properties

Type of excitation	Radially excited	Angular momentum excited
	vector mesons	vector mesons
Quantum numbers	n ${}^{2S+1}L_J = 2^3S_1$	n ${}^{2S+1}L_J = 1^3D_1$
Notation	V_E	V_D
S	1 ↑↑	1 ↑↑
n	2	1
L	0	2
orbital		×
Radial function	r ² R ² n 0.3 0.2 0.1 0.1 1 2 3 4 5 6 7 r/r _o	0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 r/r _o
Associated states	$\rho(1450), K^*(1410),$	$\rho(1700), K^*(1680),$
	$\phi(1680), \omega(1420)$	$\phi_P, \omega(1650)$
Decay types	$V_E \rightarrow PP$	$V_D \rightarrow PP$
	$V_E o VP$	$V_D o VP$
	$V_E o \gamma P$	$V_D o \gamma P$

Radially excited vector mesons: some results

TABLE X. Decays widths of (predominantly) orbitally excited vector mesons into a pseudoscalar meson and a ground-state vector meson $(V_D \to VP)$.

Decay process $V_D \to VP$	Theory (MeV)	Experiment (MeV)
$\rho(1700) \to \omega \pi$	140 ± 59	Seen (see text)
$\rho(1700) \to K^*(892)K$	56 ± 23	$83 \pm 66 \text{ MeV (see text)}$
$\rho(1700) \to \rho \eta$	41 ± 17	$68 \pm 42 \text{ MeV (see text)}$
$\rho(1700) \to \rho \eta'$	≈0	Not listed in PDG
$K^*(1680) \to K\rho$	64 ± 27	101 ± 35 by PDG
$K^*(1680) \to K\phi$	13 ± 6	Not listed in PDG
$K^*(1680) \to K\omega$	21 ± 9	Not listed in PDG
$K^*(1680) \to K^*(892)\pi$	81 ± 34	96 ± 33 by PDG
$K^*(1680) \to K^*(892)\eta$	0.5 ± 0.2	Not listed in PDG
$K^*(1680) \to K^*(892)\eta'$	≈0	Not listed in PDG
$\omega(1650) \to \rho\pi$	370 ± 156	\sim 205, 154 \pm 44, \sim 273, 120 \pm 18 (see text)
$\omega(1650) \to K^*(892)K$	42 ± 18	Not listed in PDG
$\omega(1650) \to \omega(782)\eta$	32 ± 13	\sim 100, 56 ± 30 (see text)
$\omega(1650) \to \omega(782)\eta'$	≈0	Not listed in PDG
$\phi(1930) \to K\bar{K}^*$	260 ± 109	Resonance not yet known
$\phi(1930) \to \phi(1020)\eta$	67 ± 28	Resonance not yet known
$\phi(1930) \to \phi(1020)\eta'$	≈0	Resonance not yet known

A previous work on hybrids (decay ratios only)

Eur. Phys. J. Plus (2020) 135:945 https://doi.org/10.1140/epjp/s13360-020-00900-z

THE EUROPEAN PHYSICAL JOURNAL PLUS

Regular Article

Hybrid phenomenology in a chiral approach

Walaa I. Eshraim^{1,2}, Christian S. Fischer^{1,3}, Francesco Giacosa^{2,4,a}, Denis Parganlija^{5,6}

The eLSM: a chiral model of QCD

PHYSICAL REVIEW D 87, 014011 (2013)

Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons

D. Parganlija, ^{1,2,*} P. Kovács, ^{2,3,†} Gy. Wolf, ^{3,‡} F. Giacosa, ^{2,§} and D. H. Rischke ^{2,4,||}

¹Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

²Institute for Theoretical Physics, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main, Germany

³Institute for Particle and Nuclear Physics, Wigner Research Center for Physics,

Hungarian Academy of Sciences, H-1525 Budapest, Hungary

⁴Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, D-60438 Frankfurt am Main, Germany

(Received 7 August 2012; published 8 January 2013)

PHYSICAL REVIEW D 90, 114005 (2014)

Is $f_0(1710)$ a glueball?

Stanislaus Janowski, ¹ Francesco Giacosa, ^{1,2} and Dirk H. Rischke ¹

Institute for Theoretical Physics, Goethe University,

Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany

Institute of Physics, Jan Kochanowski University, 25-406 Kielce, Poland (Received 26 August 2014; published 2 December 2014)

Other considerations on pseudotensor mesons

Our model

- couples pseudotensor mesons to pseudoscalar, vector and tensor mesons.
- reproduces present experimental data for $\pi_2(1670)$ and $K_2(1770)$.
- identifies $\eta_2(1870)$ and $\eta_2(1645)$ with the $\bar{q}q$ pseudotensor meson nonet, if non-strange-strange mixing is large.
- predicts a large non-strange-strange mixing angle $\beta_{pt} \approx -40^{\circ}$ in the isoscalar sector.
- contributes to the discussion on conflicting experimental results for the branching ratios of $\eta_2(1870)$.

Results for I = 1 and $I = \frac{1}{2}$ (pseudotensor)

Decay process	Theory (MeV)	Experiment (MeV)
$\pi_2(1670) \to \rho(770) \pi$	80.6 ± 10.8	80.6 ± 10.8
$\pi_2(1670) \to f_2(1270) \pi$	146.4 ± 9.7	146.4 ± 9.7
$\pi_2(1670) \to \bar{K}^*(892) K + c.c.$	11.7 ± 1.6	10.9 ± 3.7
$\pi_2(1670) \to \bar{K}_2^*(1430) K + c.c.$	0	
$\pi_2(1670) \to f_2'(1525) \pi$	0.1 ± 0.1	
$\pi_2(1670) \to a_2(1320) \pi$	0	not seen
$\pi_2(1670) \to a_2(1320) \eta$	0	
$\pi_2(1670) \to a_2(1320) \eta'(958)$	0	
$K_2(1770) \to \rho(770) K$	22.2 ± 3.0	
$K_2(1770) \to \bar{K}^*(892) \pi$	25.5 ± 3.4	seen
$K_2(1770) \to \bar{K}^*(892) \eta$	10.5 ± 1.4	
$K_2(1770) \to \bar{K}^*(892) \eta'(958)$	0	
$K_2(1770) \to \omega(782) K$	8.3 ± 1.1	seen
$K_2(1770) \to \phi(1020) K$	4.2 ± 0.6	seen
$K_2(1770) \to a_2(1320) K$	0	
$K_2(1770) \to \bar{K}_2^*(1430) \pi$	84.5 ± 5.6	dominant
$K_2(1770) \to \bar{K}_2^*(1430) \eta$	0	
$K_2(1770) \to \bar{K}_2^*(1430) \eta'(958)$	0	
$K_2(1770) \to f_2(1270) K$	5.8 ± 0.4	seen
$K_2(1770) \to f_2'(1525) K$	0	

Table 4: Decays of I=1 and I=1/2 pseudotensor states. The first two entries were used to determine the coupling constants of the model, see Eq. (3.2). The total decay widths are $\Gamma^{\rm tot}_{\pi_2(1670)}=(260\pm9)$ MeV and $\Gamma^{\rm tot}_{K_2(1770)}=(186\pm14)$ MeV.

ArXiv: 1608.08777

Results in the isoscalar (large isoscalar mixing!)

Decay process	Theory (MeV)	Experiment (MeV)
	$(\beta_{pt} = -42^{\circ})$	
$\eta_2(1645) \to \bar{K}^*(892) K + c.c.$	24.7	seen
$\eta_2(1645) \to a_2(1320) \pi$	186.5	
$\eta_2(1645) \to \bar{K}_2^*(1430) K + c.c.$	0	
$\eta_2(1645) \to f_2(1270) \eta$	0	not seen
$\eta_2(1645) \to f_2(1270) \eta'(958)$	0	
$\eta_2(1645) \to f_2'(1525) \eta$	0	
$\eta_2(1645) \to f_2'(1525) \eta'(958)$	0	
$\eta_2(1870) \to \bar{K}^*(892) K + c.c.$	3.3	
$\eta_2(1870) \to a_2(1320) \pi$	221.0	
$\eta_2(1870) \to \bar{K}_2^*(1430) K + c.c.$	0	
$\eta_2(1870) \to f_2(1270) \eta$	9.4	
$\eta_2(1870) \to f_2(1270) \eta'(958)$	0	
$\eta_2(1870) \to f_2'(1525) \eta$	0	
$\eta_2(1870) \to f_2'(1525) \eta'(958)$	0	

Table 6: Decays of I=0 pseudotensor states. The total decay widths are $\Gamma^{\rm tot}_{\eta_2(1645)}=(181\pm11)$ MeV and $\Gamma^{\rm tot}_{\eta_2(1870)}=(225\pm14)$ MeV.

ArXiv: 1608.08777

For a recent re-analysis with decay widhts partial-wave:

V. Shastry, E. Trotti, F.G., Phys. Rev.D 105 (2022) 5, 054022 • e-Print: 2107.13501

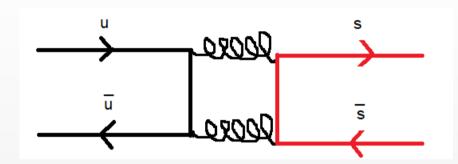
Francesco Giacosa

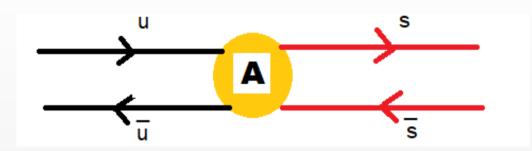
Considerations

If new experimental data confirms our results,

- we have good candidates for a ground-state pseudotensor meson nonet.
- the large mixing angle $\beta_{pt} \approx -40^\circ$ would be a mystery which deserves a detailed study.
- the current phenomenological study should be redone, including higher order corrections.

If new experimental data is at odd with our results,


- an understanding of the lowlying pseudotensor states as a standard quark-antiquark nonet would be hard.
- $\eta_2(1870)$ could be wrongly assigned as a $\bar{q}q$ -state.
- possible further mixings with (hybrid) states could be included in the model.


Large mixing angle: where does it come from?

Such a mixing is suppressed...

But this can be large

- For pseudoscalar mesons: $\eta(547)$ and $\eta'(958)$. Omix = -42° Large mixing caused by the axal anomaly.
- For vector mesons: $\omega(782)$ and $\varphi(1020)$. Θ mix = -3° Very small mixing.
- For tensor mesons: f2(1270) and f'2(1525). Θmix = 3° Also very small mixing. Why?
- Pseudotensor mesons: also large, but confirmation is needed.

Details in: 1709.07454

Excited vectors: Lagrangians

The Lagrangian of the model is:

$$\mathcal{L} = \mathcal{L}_{1,E} + \mathcal{L}_{1,D} + \mathcal{L}_{2,E} + \mathcal{L}_{2,D},$$

where:

$$\mathcal{L}_{1,E} = ia_E Tr[\partial^{\mu} P, V_{E,\mu}]P$$
 $\mathcal{L}_{1,D} = ia_D Tr[\partial^{\mu} P, V_{D,\mu}]P$

$$\mathcal{L}_{2,E} = b_E Tr[\tilde{V}_E^{\mu\nu} \{V_{\mu\nu}, P\}] \quad \mathcal{L}_{2,D} = b_D Tr[\tilde{V}_D^{\mu\nu} \{V_{\mu\nu}, P\}]$$

 a_E, a_D, b_E, b_D – coupling constants of the different decay types.

• $R \to \gamma P$ through "vector meson dominance"

$$V_{\mu\nu} \to V_{\mu\nu} + \frac{e_0}{g_\rho} Q F_{\mu\nu}$$

$$F_{\mu\nu}$$
 – field strength tensor for photons $e_0 = \sqrt{4\pi\alpha}$ $\alpha \approx 1/137$ $g_\rho \approx 5.5 \pm 0.5$ $Q = diag(\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$

Strong and radiative decay widths

TYPE OF DECAY

•
$$R \to PP$$

$$\Gamma_{R \to PP} = S \frac{|\vec{k}|^3}{6\pi m_R^2} \left[\frac{a_i}{2} \lambda_{RPP}\right]^2$$

•
$$R \to VP, R \to \gamma P$$

$$\Gamma_{R \to VP} = S \frac{|\vec{k}|^3}{12\pi} \left[\frac{b_i}{2} \lambda_{RVP} \right]^2$$

EXAMPLES

•
$$K^*(1410) \to K\eta$$

$$\Gamma_{K^*(1410)\to K\eta} = \frac{|\vec{k}|^3}{6\pi m_{K^*(1410)}^2} \left[\frac{a_E}{2} \frac{1}{2} (\cos\theta_p - \sqrt{2}\sin\theta_p)\right]^2$$

•
$$\phi(1680) \to \phi(1020)\eta$$

 $\Gamma_{\phi(1680) \to \phi(1020)\eta} = \frac{|\vec{k}|^3}{12\pi} \left[\frac{b_E}{2} \frac{\sin\theta_p}{\sqrt{2}}\right]^2$

where:

$$|\vec{k}| = \frac{\sqrt{m_R^2 + (m_a^2 - m_b^2)^2 - 2(m_a^2 + m_b^2)m_R^2}}{2m_R};$$

$$m_R - \text{ mass of the decaying resonance;}$$

$$a_i, b_i - \text{ coupling constants } (i = E, D);$$

 m_a, m_b — masses of decay products; S — symmetry factor;

Matrices of fields

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & K^0 & \eta_S \end{pmatrix}$$

$$V^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega^{\mu} + \rho^{\mu 0}}{\sqrt{2}} & \rho^{\mu +} & K_{i}^{\mu \star +} \\ \rho^{\mu -} & \frac{\omega^{\mu} - \rho^{\mu 0}}{\sqrt{2}} & K^{\mu \star 0} \\ K^{\mu \star -} & \bar{K}^{\mu \star 0} & \phi^{\mu} \end{pmatrix}$$

$$V_{E}^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{E}^{\mu} + \rho_{E}^{\mu 0}}{\sqrt{2}} & \rho_{E}^{\mu +} & K_{E}^{\mu \star +} \\ \rho_{E}^{\mu -} & \frac{\omega_{E}^{\mu} - \rho_{E}^{\mu 0}}{\sqrt{2}} & K_{E}^{\mu \star 0} \\ K_{E}^{\mu \star -} & K_{E}^{\mu \star 0} & \phi_{E}^{\mu} \end{pmatrix}$$

$$V_{E}^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{E}^{\mu} + \rho_{E}^{\mu 0}}{\sqrt{2}} & \rho_{E}^{\mu +} & K_{E}^{\mu \star +} \\ \rho_{E}^{\mu -} & \frac{\omega_{E}^{\mu} - \rho_{E}^{\mu 0}}{\sqrt{2}} & K_{E}^{\mu \star 0} \\ K_{E}^{\mu \star -} & K_{E}^{\mu \star 0} & \phi_{E}^{\mu} \end{pmatrix} \qquad V_{D}^{\mu} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{D}^{\mu} + \rho_{D}^{\mu 0}}{\sqrt{2}} & \rho_{D}^{\mu +} & K_{D}^{\mu \star +} \\ \rho_{D}^{\mu -} & \frac{\omega_{D}^{\mu} - \rho_{D}^{\mu 0}}{\sqrt{2}} & K_{D}^{\mu \star 0} \\ K_{D}^{\mu \star -} & K_{D}^{\mu \star 0} & \phi_{D}^{\mu} \end{pmatrix}$$

- $P = \{\pi, K, \eta, \eta'\}$
- $V = \{\rho(770), K^*(892), \phi(1020), \omega(782)\}$
- $V_E = \{ \rho(1450), K^*(1410), \phi(1680), \omega(1420) \}$
- $V_D = \{ \rho(1700), K^*(1680), \phi_p, \omega(1650) \}$

Which mass for the missing state?

TABLE I. Mass differences between the members of the two nonets of excited vector mesons.

$\overline{V_E}$	$\rho(1450)$	$K^*(1410)$	$\omega(1420)$	$\phi(1680)$
V_D	$\rho(1700)$	$K^*(1680)$	$\omega(1650)$	$\phi(???)$
Difference	250 MeV	270 MeV	230 MeV	?

Hence, we can estimate the mass of $\phi(???)$ as

$$m_{\phi(???)} \simeq (m_{\phi(1680)} + 250 \pm 20) \text{ MeV} = 1930 \pm 20 \text{ MeV}.$$

From now on we shall call this hypothetical state

$$\phi(???) \equiv \phi(1930).$$