Antiproton stopping in nuclei

Antiproton beams for NA61/SHINE

The physics case Antiproton data taking Other experiments Antineutrons

Andrzej Rybicki, IFJ PAN Kraków

NA61++/SHINE: Physics opportunities from ions to pions

December 17th, 2022

Why antiprotonic beams (1)?

Strong interactions physics

- NA61/SHINE data are (already now!) very restrictive in terms of phenomenology of transport of baryon number,
- ... which is highly informative on quarks, gluons, color exchange, etc in the non-perturbative process,

but:

 adding baryon number annihilation to the process makes a qualitative difference! -------- > constrains your model in a powerful way Why antiprotonic beams (2)?

Cosmic ray physics

Model building:

- Effect of valence quark on forward emission
- Better visibility for baryon stopping (target nucleons boosted at mid-rapidity, or beyond)
- Particularly interesting if there is the same data for

p+A

p+A

(From communication between Michael and Tanguy – thanks!)

Note: experimental data come from EPJC 65 (2010) 9

Andrzej Rybicki

Antiproton stopping in nuclei

The importance of data from NA61/SHINE (no freedom with this data!)

Andrzej Rybicki

Antiproton stopping in nuclei

The importance of data from NA61/SHINE (state of the art)

1. In p+A collisions, **multiple gluon exchange** increases the size (dimension) of color representations for constituent valence and sea quarks ;

2. We have diquarks (color anti-triplets) made of **valence-valence**, **valence-sea**, and **sea-sea** quarks ;

3. We have a new "no diquark" configuration (see below) ;

4. The best way to kill verify such a model is to add up **annihilation**.

Andrzej Rybicki

The importance of data from NA61/SHINE (annihilation!)

1. In p+A collisions, **multiple gluon exchange** increases the size (dimension) of color representations for constituent valence and sea quarks ;

2. We have diquarks (color anti-triplets) made of **valence-valence**, **valence-sea**, and **sea-sea** quarks ;

3. We have a new "no diquark" configuration (see below) ;

4. The best way to kill verify such a model is to add up **annihilation**.

5. In \overline{p} +A, each diquark will annihilate with its own, calculable probability.

Andrzej Rybicki

Antiproton stopping in nuclei

The importance of data from NA61/SHINE (annihilation!)

1. In p+A collisions, **multiple gluon exchange** increases the size (dimension) of color representations for constituent valence and sea quarks ;

2. We have diquarks (color anti-triplets) made of **valence-valence**, **valence-sea**, and **sea-sea** quarks ;

3. We have a new "no diquark" configuration (see below) ;

4. The best way to kill verify such a model is to add up **annihilation**.

5. In \overline{p} +A, each diquark will annihilate with its own, calculable probability.

6. (Bonus) the p-p spectrum will show the fate of target nucleons.

Antiproton stopping in nuclei

73 (2013) 2364

Experimental data from EPJC 65 (2010) 9, EPJC

Antiproton data taking with NA61/SHINE

NA61/SHINE capabilities for \overline{p} program

Secondary hadron beam at 158 GeV/c

Assuming:

- average SPS super cycle: 40 s flat top: 4.8 s
- $\bullet~\overline{p}$ content in the beam of $\approx 1\%$
- \bullet target of 5% interaction probability
- maximum intensity of the beam for momenta of interest at H2: 200 kHz (limited by off-time beam particles)
- and typical efficiencies summarized in NA61/SHINE Addendum 2018, Sec 9.3

Mean number of recorded interactions: ≈600k events per day

Szymon Puławski Nikolaos Charitonidis

17/

Magdalena Kuich (University of Warsaw)

NA61/SHINE long-term plans

Data taking estimates

1. Assuming 158 GeV/c beam

2. \overline{p} +p and \overline{p} +A (A=9, 12, 45, 208) 6M events per sample: 5 x 10 days

3. p+p and p+A (A=9, 12, 45, 208) 6M events per sample: 5 x 1 day?

55 days

8 weeks of data taking to fulfill a ~maximum plan at one energy

1. Assuming 158 GeV/c beam

2. p+p and p+A (A=12, 208)
3. p+p and p+A (A=12, 208)
6M events per sample: 3 x 10 days
6M events per sample: 3 x 1 day?
33 days

5 weeks of data taking to fulfill a ~minimum plan at one energy

Andrzej Rybicki

Other experiments

Andrzej Rybicki

Antiproton stopping in nuclei

NA61++/SHINE: physics opportunities 13

SPS (1985)

- 1. ACCMOR, beam: 120 GeV/c
- 2. p+A and p+A: (Be, Cu, Ag, W, U)
- 3. leading proton and antiproton spectra in a wide range of x_{r}
- 4. A-dependence of annihilation x-section
- 5. statistics: up to ~30k events per sample

FAIR (-?-)

- 1. Beam: up to 15 GeV/c
- 2. Statistics: ∞ events?
- 3. Ability to measure spectra?

c W, $\dot{\bigcirc}$ ---(1/ σ_{inel})· $d\sigma/dx(pA \rightarrow p + anything)$, ϕ ---(1/ σ_{inel})· $d\sigma/dx$ $(\bar{p}A \rightarrow \bar{p} + \text{anything})$

Antineutrons

Andrzej Rybicki

Antiproton stopping in nuclei

NA61++/SHINE: physics opportunities 15

Antineutrons

1. p+A and \overline{p} +A reactions:

Leading protons / antiprotons

Leading neutrons / antineutrons

- 2. Neutron measurements are extremely interesting for studies of baryon stopping
- 3. First discussions indicate that such measurements would be doable with the MPSD/FPSD system

Andrzej Rybicki

Antiproton stopping in nuclei

NA61++/SHINE: physics opportunities 16

Summary

• A possible comparative analysis of

p+p and p+A versus \overline{p} +p and \overline{p} +A interactions

could significantly improve the understanding of the fate of quarks and gluons in the collision

• NA61++/SHINE:

decent statistics from data taking with high energy antiproton beams coverage of the entire projectile hemisphere all the **p+p / p+A / \overline{p}+p / \overline{p}+A reactions measured in identical experimental conditions** measurement potentially not limited to (anti)protons but including other (anti)baryons

Thank you !