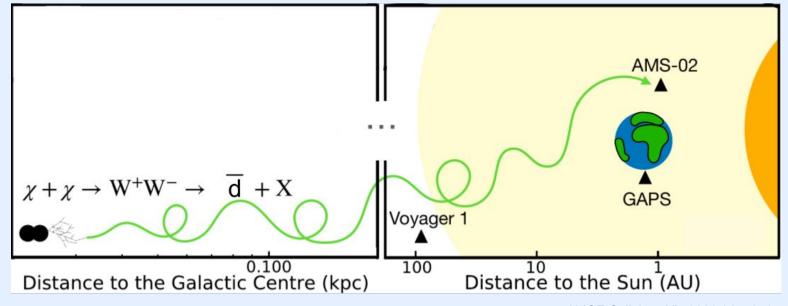


The future of antinuclei production studies

<u>Maximilian Horst</u>, Laura Fabbietti, Chiara Pinto Technical University Munich NA61++/SHINE Workshop CERN Dec. 16th 2022

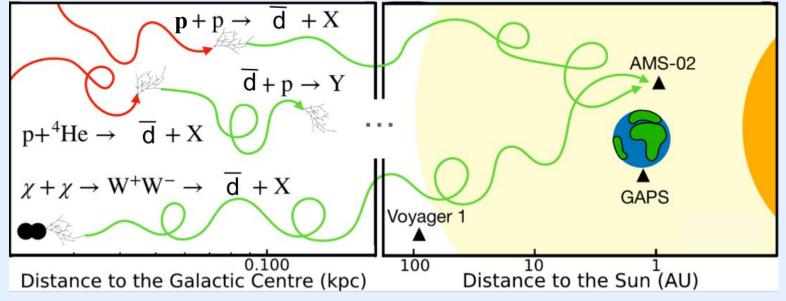
Antinuclei in cosmic rays



ALICE Collab. arXiv:2202.01549v1

Antinuclei could be a probe for indirect Dark Matter searches

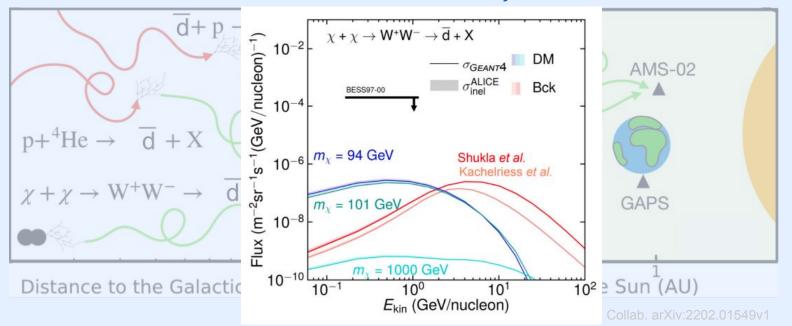
Antinuclei in cosmic rays



ALICE Collab. arXiv:2202.01549v1

- Antinuclei could be a probe for indirect Dark Matter searches
- However: Astrophysical background from cosmic rays expected

Antinuclei in cosmic rays

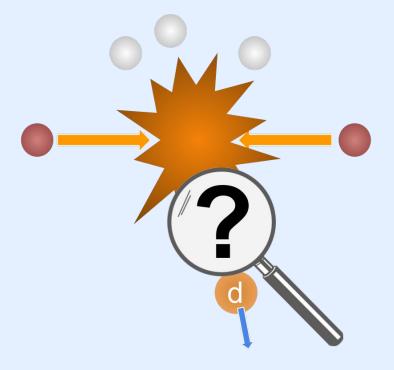


Antinuclei could be a probe for indirect Dark Matter searches

- However: Astrophysical background from cosmic rays expected
- > High Signal/Noise ratio (~ 10^2 - 10^4) at low E_{kin} expected by many models!

Overview of production models

(anti)nuclear production described by two models:

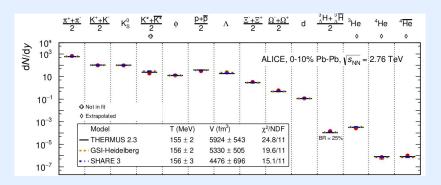


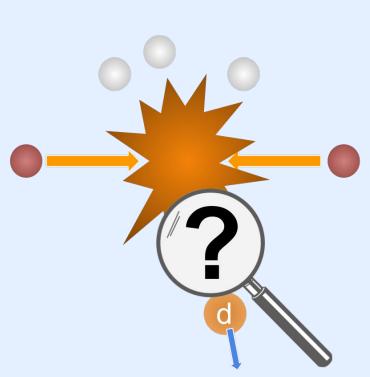
Overview of production models

(anti)nuclear production described by two models:

Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- ➤ No microscopic description of nuclei formation



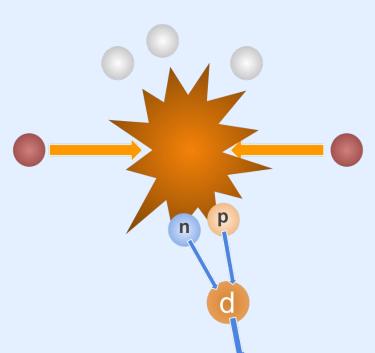


Overview of production models

(anti)nuclear production described by two models:

Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- No microscopic description of nuclei formation
 Coalescence model
- Nucleons bind after chemical freeze-out if they are close in phase-space



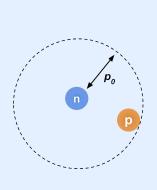
Overview of production models

(anti)nuclear production described by two models:

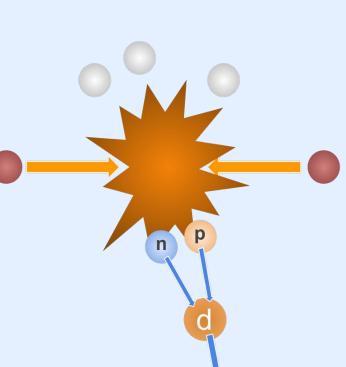
Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- ➤ No microscopic description of nuclei formation
- Coalescence model
- Nucleons bind after chemical freeze-out if they are close in phase-space
- Common implementation:
 Spherical Approximation

 $\Delta p < p_0$



Dx

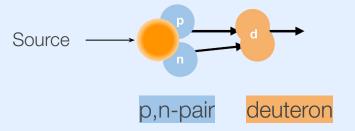


Future of antinuclei - Maximilian Horst @ NA61++/SHINE workshop 17/12/22

py

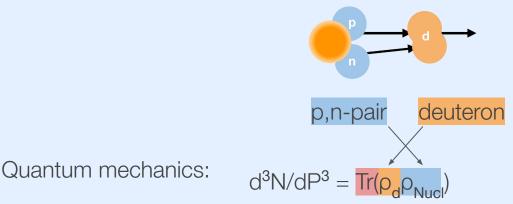
Wigner function formalism

What do we need for coalescence?



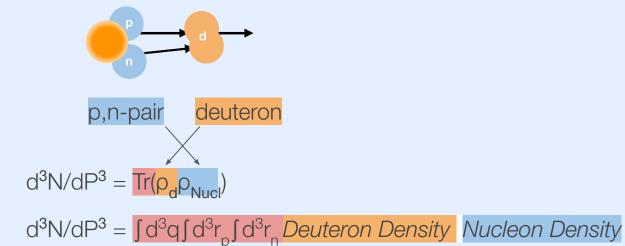
Wigner function formalism

What do we need for coalescence?



Wigner function formalism

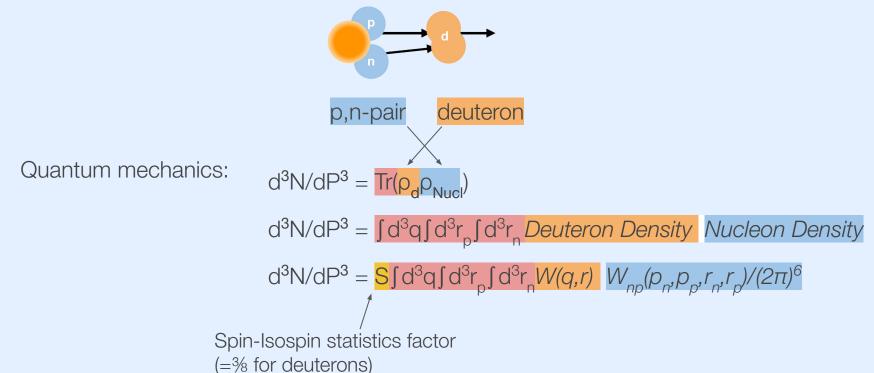
What do we need for coalescence?



Quantum mechanics:

Wigner function formalism

What do we need for coalescence?



Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = \frac{H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}{G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}$$

G_{np} is the momentum distribution of nucleons
 H_{np} is the spatial distribution of nucleons. Assuming a Gaussian source

$$\frac{H_{np}(\vec{r_n}, \vec{r_p})}{H_{np}(\vec{r_n}, \vec{r_p})} = h(\vec{r_n})h(\vec{r_p}) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r_n^2} + \vec{r_p^2}}{2\sigma^2}\right)$$

Some simple calculation later

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \ e^{-q^2 d^2} G_{np} (\vec{P_d}/2 + \vec{q}, \vec{P_d}/2 - \vec{q})$$
Nucleon momentum phase-space
with

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2}$$
Emission source size

[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = \frac{H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}{G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}$$

G_{np} is the momentum distribution of nucleons
 H_{np} is the spatial distribution of nucleons. Assuming a Gaussian source

$$\frac{H_{np}(\vec{r_n}, \vec{r_p})}{H_{np}(\vec{r_n}, \vec{r_p})} = h(\vec{r_n})h(\vec{r_p}) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r_n^2} + \vec{r_p^2}}{2\sigma^2}\right)$$

Some simple calculation later

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, e^{-q^2 d^2} G_{np} P_d/2 + \vec{q}, \vec{P_d}/2 - \vec{q}$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$
[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

with

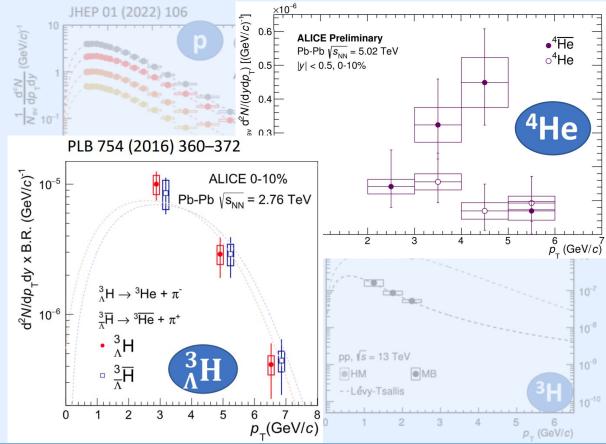
(anti)nuclei measurements

- A variety of light (anti)nuclei has been measured in pp
 From (anti)Deuterone to
- From (anti)Deuterons to (anti)Helium-3

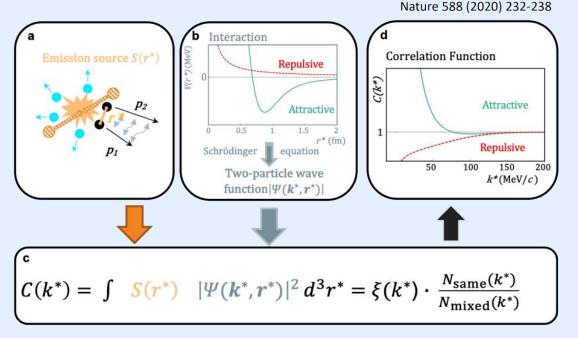


(anti)nuclei measurements

- A variety of light (anti)nuclei has been measured in pp
- From (anti)Deuterons to (anti)Helium-3
- In Pb–Pb: (anti)Helium-4 and (anti)Hypertriton

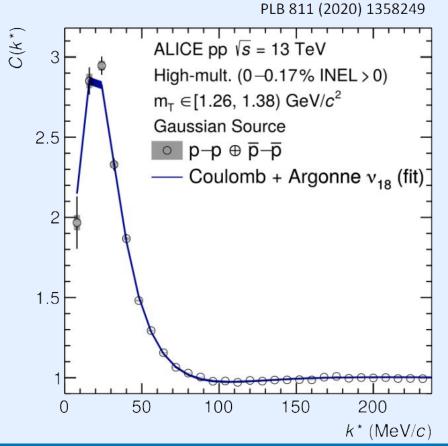


- ALICE is pioneering the study of the strong interaction using femtoscopic correlations
- Momentum correlations can be employed to explore two-particle dynamics
- The correlation function depends on two ingredients:
 - Particle emission source
 - Two-particle wave function (quantum statistics + Coulomb + strong interaction)

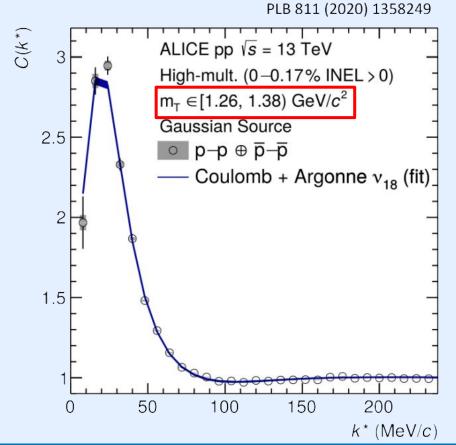


If we measure $C(k^*)$ and use a known interaction (e.g. nucleon-nucleon) we can study the emission source

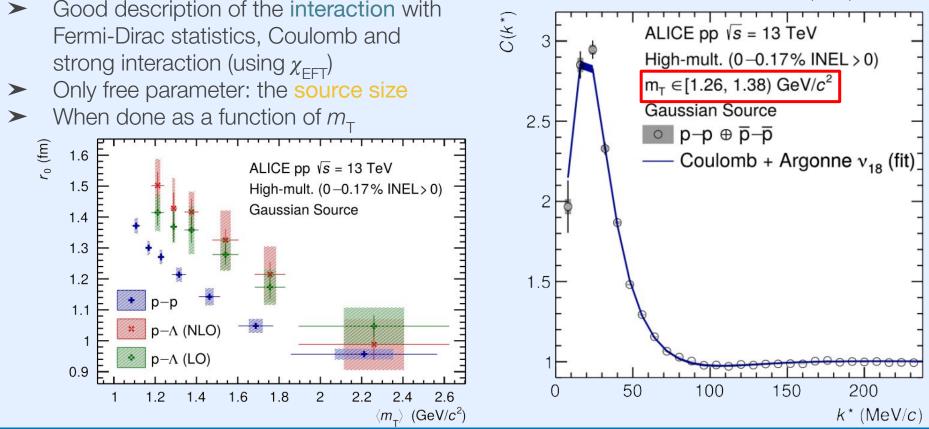
- Good description of the interaction with Fermi-Dirac statistics, Coulomb and strong interaction (using χ_{FFT})
- Only free parameter: the source size



- Good description of the interaction with Fermi-Dirac statistics, Coulomb and strong interaction (using χ_{FFT})
- ➤ Only free parameter: the source size
- > When done as a function of $m_{\rm T}$



What did ALICE do for (anti)nuclei studies? Femtoscopy PLB 811 (2020) 1358249



Modelling (anti)nuclei production Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})$$

G_{np} is the momentum distribution of nucleons
 H^{np}_{np} is the spatial distribution of nucleons. Assuming a Gaussian source

$$H_{np}(\vec{r}_n, \vec{r_p}) = h(\vec{r}_n)h(\vec{r}_p) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r}_n^2 + \vec{r}_p^2}{2\sigma^2}\right)$$

Some simple calculation later

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, e^{-q^2 d^2} G_{np} P_d / 2 + \vec{q}, \vec{P_d} / 2 - \vec{q})$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$
[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

with

State of the art coalescence predictions

Wigner function formalism, tuned to ALICE measurements

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, \mathrm{e}^{-q^2 d^2} G_{np} \frac{P_d/2 + \vec{q}, \vec{P_d}/2 - \vec{q}}{\zeta}$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$

> The term $3\zeta e^{-q^2d^2}$ can be interpreted as a coalescence probability depending on the relative momentum q and the source size σ

➤ More general:

_et's remember:

$$p(\sigma,q) = \int d^3 r_p d^3 r_n h(r_n) h(r_p) W(q,r)$$

> This allows us to calculate the coalescence probability for arbitrary Wigner functions

Probe different hypotheses for the deuteron wave function $W(\vec{q}, \vec{r}) = \int d^3 \zeta \ \Psi(\vec{r} + \vec{\zeta}/2) \Psi^*(\vec{r} - \vec{\zeta}/2) e^{i\vec{q}\vec{\zeta}}$

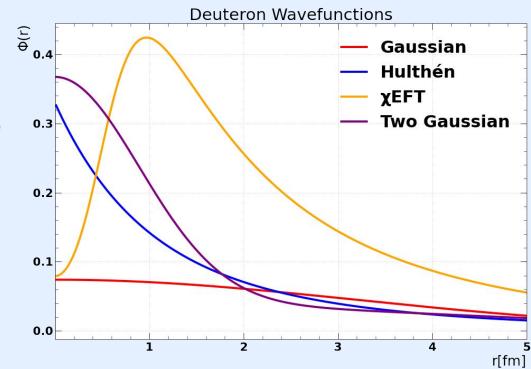
State of the art coalescence predictions

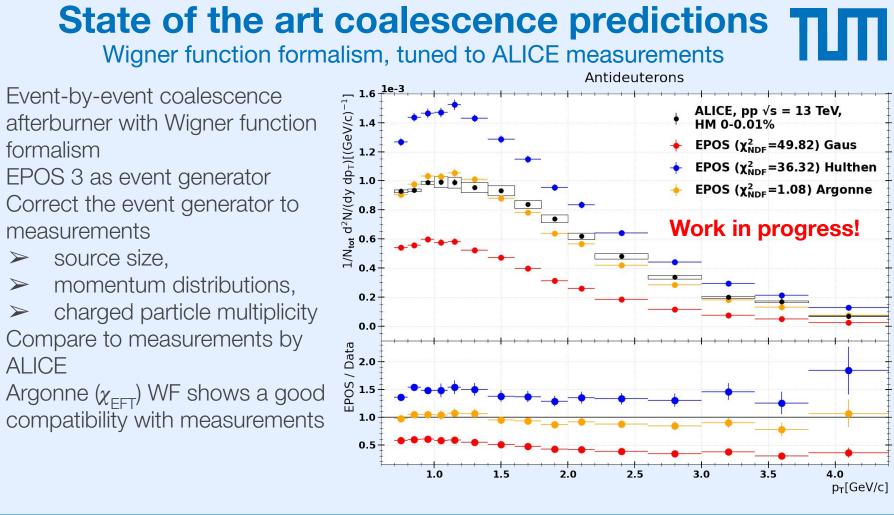
Wigner function formalism, tuned to ALICE measurements

- There are multiple models for the deuteron wave function
- ► Simplistic:

Single Gaussian

- From *pion field theory* (Yukawa-like potential) ('50s):
 Hulthén
- Simplification of Hulthén ('50s):
 Two Gaussian
- From modern χ_{EFT} : Argonne v_{18}



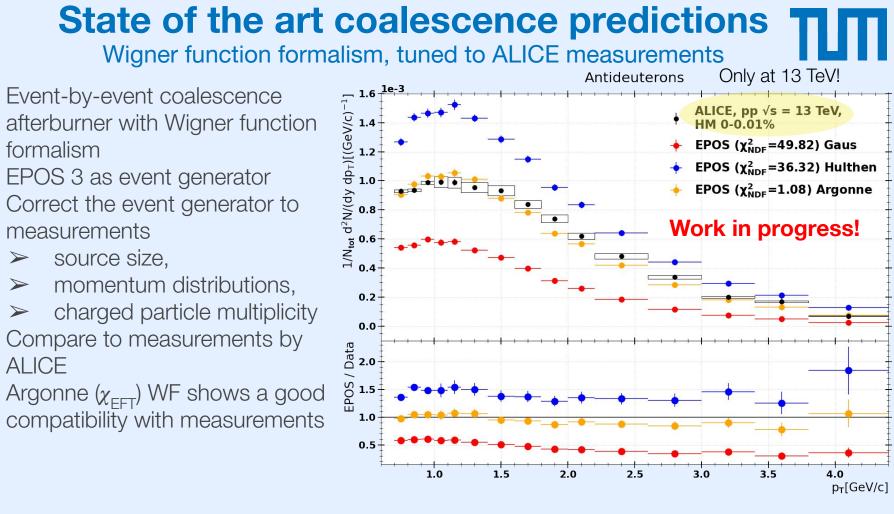


>

>

>

 \succ



>

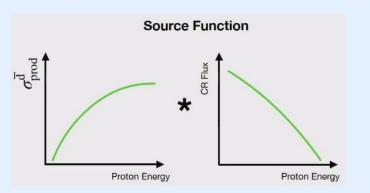
 \succ

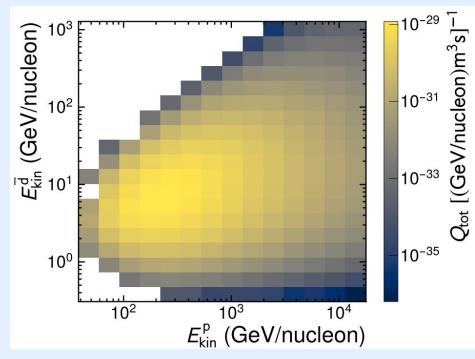
>

 \succ

Production energy of antinuclei

- Antideuteron source function as a function of kinetic energy of the incoming proton and produced antideuteron
- ➤ Antideuteron production predominantly for protons of E_{kin}~200-500 GeV (√s ~ 19-30 GeV for p-H)





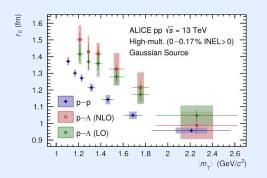
Šerkšnytė, et al. PHYSICAL REVIEW D 105, 083021 (2022)

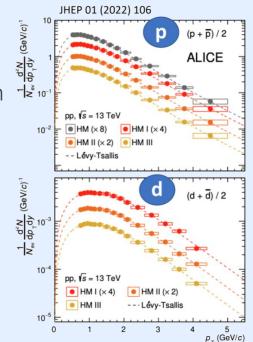
What do we need from NA61

NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays
 Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

What we need from NA61 to study nuclei formation:

- ► Emission source size measurements via two-particle correlation
- ► (Anti)nucleon momentum distributions
- (Anti)nuclei production measurements





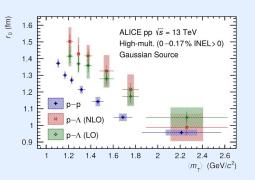
What do we need from NA61

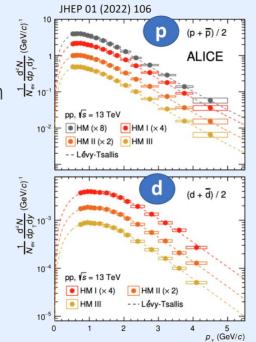
NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays
 Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

What we need from NA61 to study nuclei formation:

- Emission source size measurements via two-particle correlation
 (Anti)nucleon momentum distributions
- (Anti)nuclei production measurements

Thanks for the amazing Workshop!



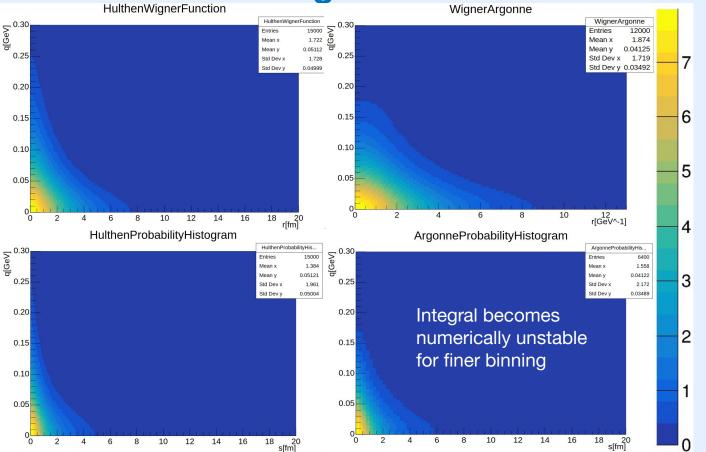


Backup slides

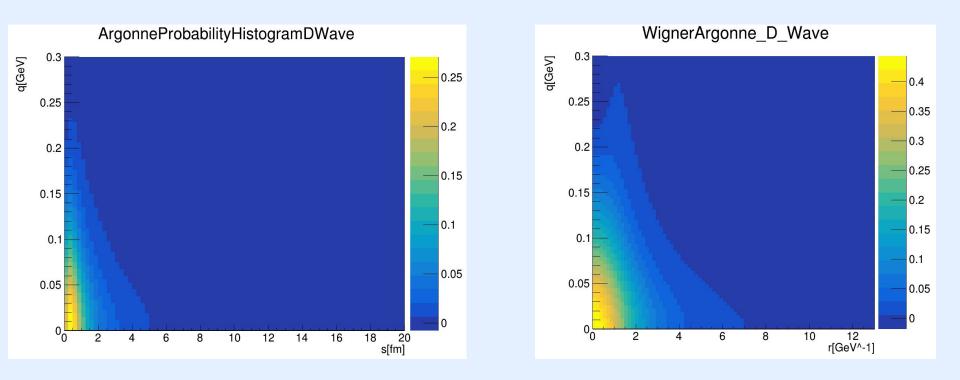
Future of antinuclei - Maximilian Horst @ NA61++/SHINE workshop 17/12/22

29

New Wiger functions/Probabilities



Argonne D-State probability



D-State probability is $6\% \rightarrow Maximum \sim 11\%$ effect

Overview of (anti)nuclei data (anti)nuclei measurements

- No measurement of antideuterons in the energy region (~19-30 GeV) relevant for astrophysics
- ➤ Most measurements are very old (~60s and 70s)
- NA61's energy (17.3 GeV) would be a perfect candidate to study antinuclei for astrophysics

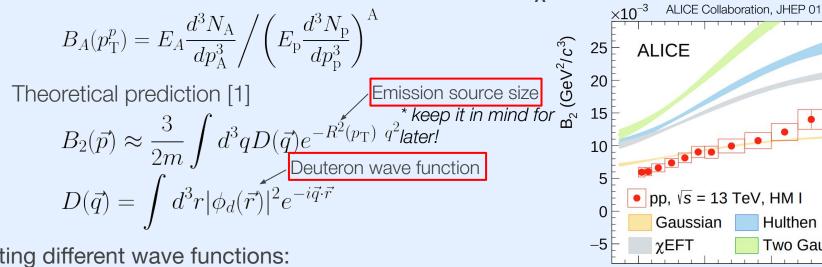
We need precise measurements at the energies of interest to constrain (anti)nuclei production!

Experiment or Laboratory	Collision	$p_{\rm lab}~({\rm GeV}/c)$	\sqrt{s} (GeV)
CERN	p + p	19	6.15
CERN	$\mathbf{p} + \mathbf{p}$	24	6.8
Serpukhov	p + p p + Be	70	11.5
CERN-SPS	p + Be p + Al	200	19.4
Fermilab	p + Be	300	23.8
CERN-ISR	p + p	1497.8	53
CERN-ALICE	p + p	4.3×10^{5}	900
CERN-ALICE	p + p	2.6×10^{7}	7000

No antideuteron data!

Modelling (anti)nuclei production B_{Δ} predictions

Important observable in accelerator measurements: **B**



Testing different wave functions:

- Hulthén: Favoured by low energy scattering experiments
- **Gaussian:** Best description of currently available ALICE data
- Two Gaussians: Approximates Hulthén, easy to use in calculations
- *x***EFT:** Favoured by modern nuclear interaction experiments (e.g. Femtoscopy)

[1] Blum, Takimoto, PRC 99 (2019) 044913

1.0

0.5

Hulthen

1.5

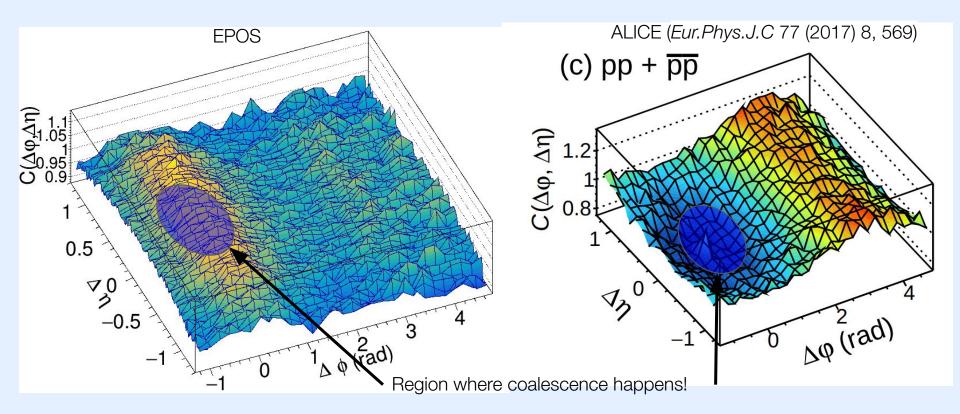
Two Gaussians

2.0

 p_{T}/A (GeV/c)

Correlations comparison

$\Delta\eta$ - $\Delta\phi$ Correlation function



The advanced source model in EPOS

Scheme

Propagation scheme:

- We obtain a scaling factor as a function of $m_{\rm T}$ from the source size measurement
- We move the primordials out radially until we reach the scaled distance
- This distance (\tilde{x}) is the same for both primordials of the pair

