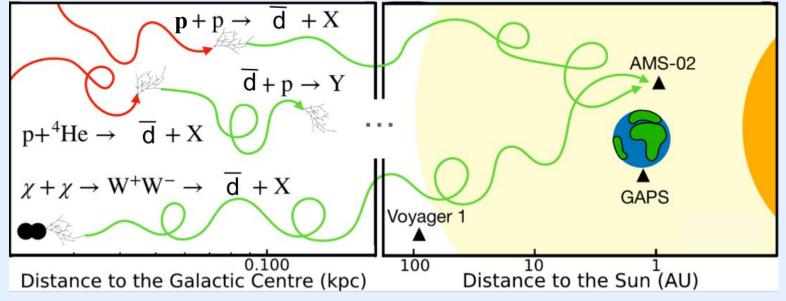



# The future of antinuclei production studies

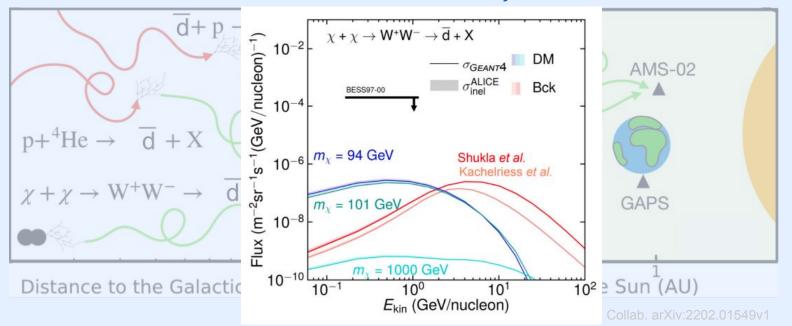
<u>Maximilian Horst</u>, Laura Fabbietti, Chiara Pinto Technical University Munich NA61++/SHINE Workshop CERN Dec. 16<sup>th</sup> 2022


Antinuclei in cosmic rays



ALICE Collab. arXiv:2202.01549v1

Antinuclei could be a probe for indirect Dark Matter searches

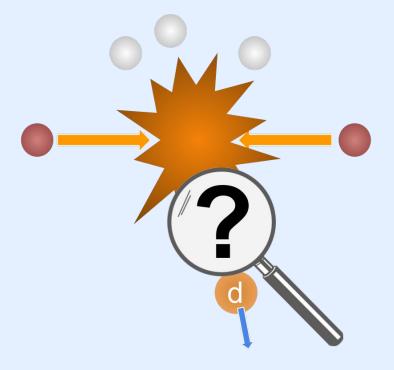

Antinuclei in cosmic rays



ALICE Collab. arXiv:2202.01549v1

- Antinuclei could be a probe for indirect Dark Matter searches
- However: Astrophysical background from cosmic rays expected

Antinuclei in cosmic rays

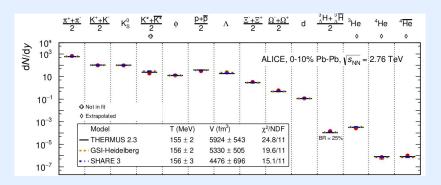


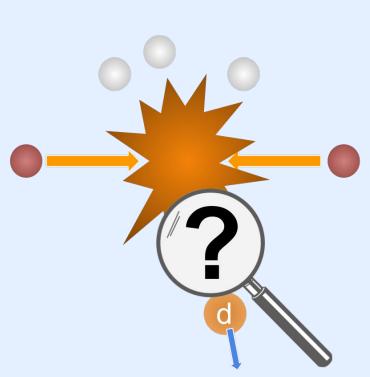

Antinuclei could be a probe for indirect Dark Matter searches

- However: Astrophysical background from cosmic rays expected
- > High Signal/Noise ratio (~ $10^2$ - $10^4$ ) at low E<sub>kin</sub> expected by many models!

Overview of production models

(anti)nuclear production described by two models:





Overview of production models

(anti)nuclear production described by two models:

#### Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- ➤ No microscopic description of nuclei formation





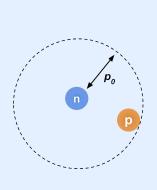
Overview of production models

(anti)nuclear production described by two models:

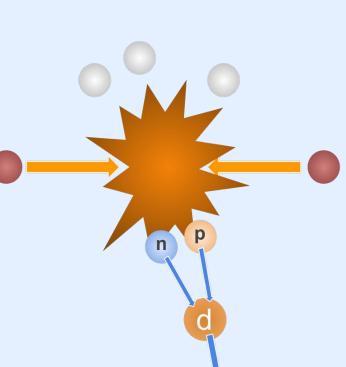
#### Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- No microscopic description of nuclei formation
   Coalescence model
- Nucleons bind after chemical freeze-out if they are close in phase-space




Overview of production models

(anti)nuclear production described by two models:

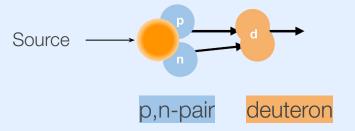

#### Statistical hadronization

- Particle yields (including nuclei) described by filling the available phase-space after the collision
- Works very well with a common temperature of the medium (T=154 MeV)
- ➤ No microscopic description of nuclei formation
- Coalescence model
- Nucleons bind after chemical freeze-out if they are close in phase-space
- Common implementation:
   Spherical Approximation

 $\Delta p < p_0$ 

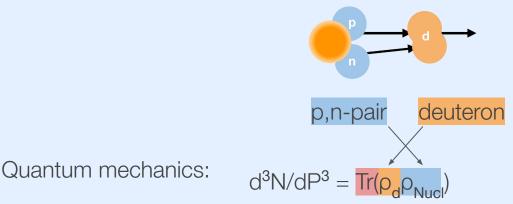


**D**x



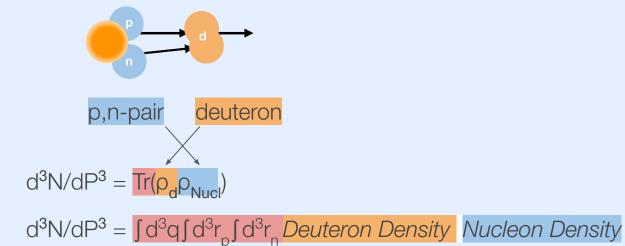

Future of antinuclei - Maximilian Horst @ NA61++/SHINE workshop 17/12/22

py


Wigner function formalism

What do we need for coalescence?



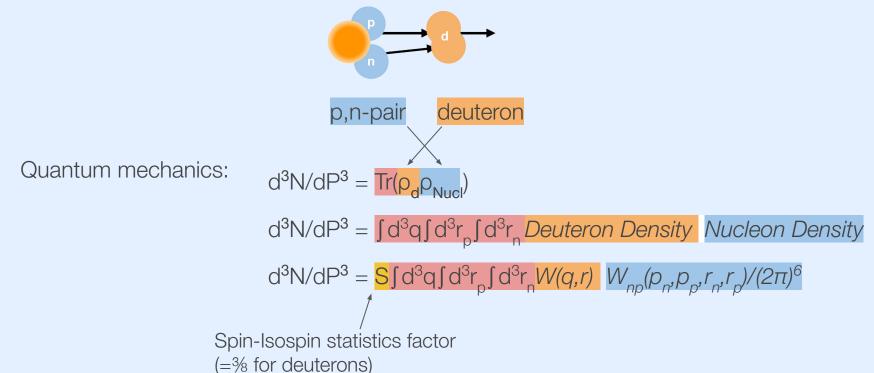

Wigner function formalism

What do we need for coalescence?



Wigner function formalism

What do we need for coalescence?




Quantum mechanics:



Wigner function formalism

What do we need for coalescence?



Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = \frac{H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}{G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}$$

G<sub>np</sub> is the momentum distribution of nucleons
 H<sub>np</sub> is the spatial distribution of nucleons. Assuming a Gaussian source

$$\frac{H_{np}(\vec{r_n}, \vec{r_p})}{H_{np}(\vec{r_n}, \vec{r_p})} = h(\vec{r_n})h(\vec{r_p}) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r_n^2} + \vec{r_p^2}}{2\sigma^2}\right)$$

Some simple calculation later  

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \ e^{-q^2 d^2} G_{np} (\vec{P_d}/2 + \vec{q}, \vec{P_d}/2 - \vec{q})$$
Nucleon momentum phase-space  
with  

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2}$$
Emission source size

[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = \frac{H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}{G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})}$$

G<sub>np</sub> is the momentum distribution of nucleons
 H<sub>np</sub> is the spatial distribution of nucleons. Assuming a Gaussian source

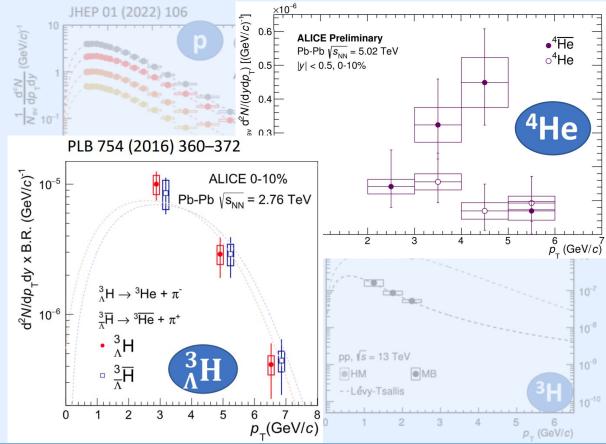
$$\frac{H_{np}(\vec{r_n}, \vec{r_p})}{H_{np}(\vec{r_n}, \vec{r_p})} = h(\vec{r_n})h(\vec{r_p}) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r_n^2} + \vec{r_p^2}}{2\sigma^2}\right)$$

Some simple calculation later

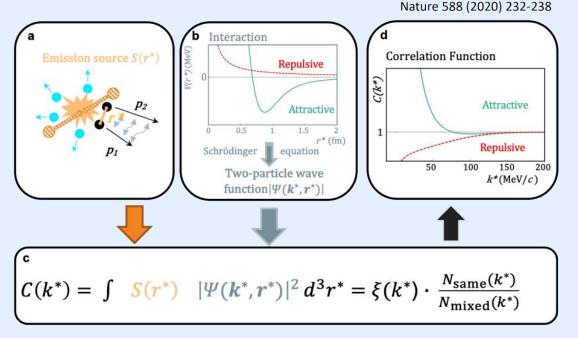

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, e^{-q^2 d^2} G_{np} P_d/2 + \vec{q}, \vec{P_d}/2 - \vec{q}$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$
[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

with

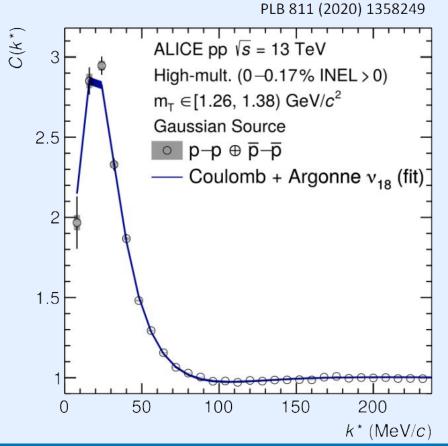

(anti)nuclei measurements

- A variety of light (anti)nuclei has been measured in pp
   From (anti)Deuterone to
- From (anti)Deuterons to (anti)Helium-3

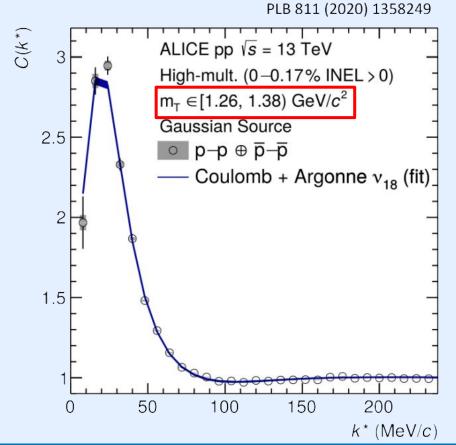



(anti)nuclei measurements

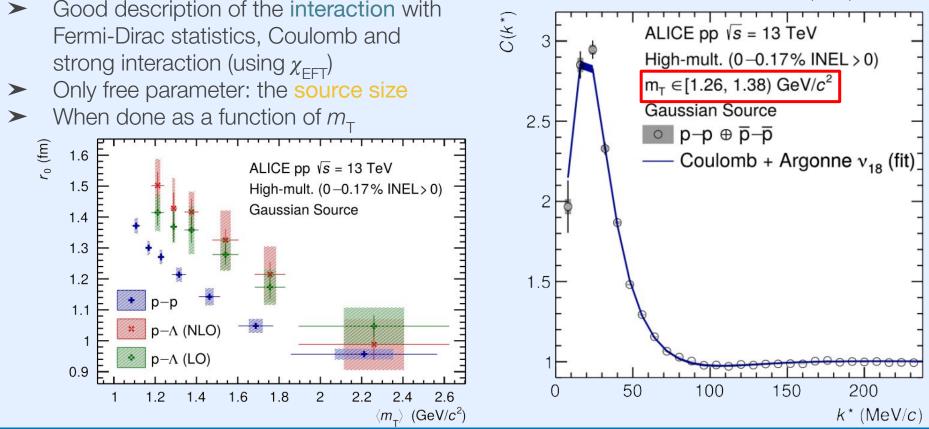
- A variety of light (anti)nuclei has been measured in pp
- From (anti)Deuterons to (anti)Helium-3
- In Pb–Pb: (anti)Helium-4 and (anti)Hypertriton




- ALICE is pioneering the study of the strong interaction using femtoscopic correlations
- Momentum correlations can be employed to explore two-particle dynamics
- The correlation function depends on two ingredients:
  - Particle emission source
  - Two-particle wave function (quantum statistics + Coulomb + strong interaction)




If we measure  $C(k^*)$  and use a known interaction (e.g. nucleon-nucleon) we can study the emission source


- Good description of the interaction with Fermi-Dirac statistics, Coulomb and strong interaction (using χ<sub>FFT</sub>)
- Only free parameter: the source size



- Good description of the interaction with Fermi-Dirac statistics, Coulomb and strong interaction (using χ<sub>FFT</sub>)
- ➤ Only free parameter: the source size
- > When done as a function of  $m_{\rm T}$



#### What did ALICE do for (anti)nuclei studies? Femtoscopy PLB 811 (2020) 1358249



#### Modelling (anti)nuclei production Wigner function formalism

Two-nucleon Wigner function

$$W_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q},r_n,r_p) = H_{np}(\vec{r}_n,\vec{r}_p)G_{np}(\vec{P}/2+\vec{q},\vec{P}/2-\vec{q})$$

G<sub>np</sub> is the momentum distribution of nucleons
 H<sup>np</sup><sub>np</sub> is the spatial distribution of nucleons. Assuming a Gaussian source

$$H_{np}(\vec{r}_n, \vec{r_p}) = h(\vec{r}_n)h(\vec{r}_p) = \frac{1}{(2\pi\sigma^2)^3} \exp\left(-\frac{\vec{r}_n^2 + \vec{r}_p^2}{2\sigma^2}\right)$$

Some simple calculation later

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, e^{-q^2 d^2} G_{np} P_d / 2 + \vec{q}, \vec{P_d} / 2 - \vec{q})$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$
[2] Kachelries, Eur.Phys.J.A 56 (2020) 1, 4

with

# State of the art coalescence predictions

Wigner function formalism, tuned to ALICE measurements

$$\frac{d^3 N_d}{dP_d^3} = \frac{3\zeta}{(2\pi)^6} \int d^3 q \, \mathrm{e}^{-q^2 d^2} G_{np} \frac{P_d/2 + \vec{q}, \vec{P_d}/2 - \vec{q}}{\zeta}$$

$$\zeta \equiv \left(\frac{d^2}{d^2 + 4\sigma^2}\right)^{3/2} \quad \begin{array}{c} \text{Constrained} \\ \text{from data!} \end{array}$$

> The term  $3\zeta e^{-q^2d^2}$  can be interpreted as a coalescence probability depending on the relative momentum q and the source size  $\sigma$ 

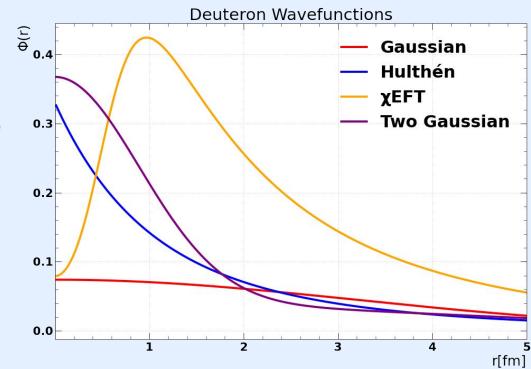
➤ More general:

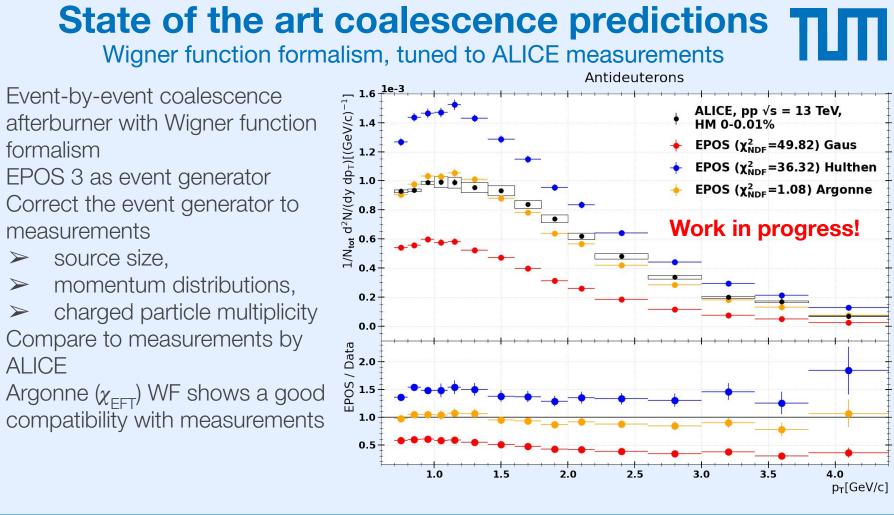
\_et's remember:

$$p(\sigma,q) = \int d^3 r_p d^3 r_n h(r_n) h(r_p) W(q,r)$$

> This allows us to calculate the coalescence probability for arbitrary Wigner functions

Probe different hypotheses for the deuteron wave function  $W(\vec{q}, \vec{r}) = \int d^3 \zeta \ \Psi(\vec{r} + \vec{\zeta}/2) \Psi^*(\vec{r} - \vec{\zeta}/2) e^{i\vec{q}\vec{\zeta}}$ 


State of the art coalescence predictions

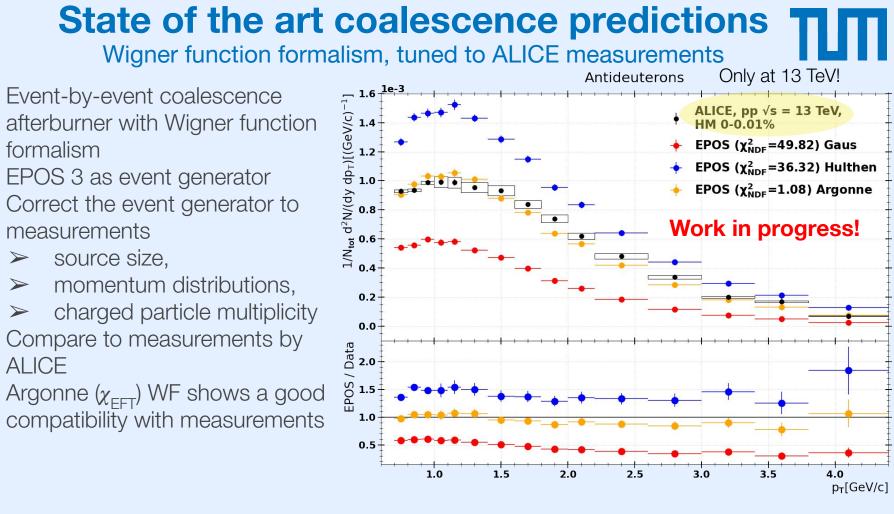

Wigner function formalism, tuned to ALICE measurements

- There are multiple models for the deuteron wave function
- ► Simplistic:

#### Single Gaussian

- From *pion field theory* (Yukawa-like potential) ('50s):
   Hulthén
- Simplification of Hulthén ('50s):
   Two Gaussian
- From modern  $\chi_{EFT}$ : Argonne  $v_{18}$






>

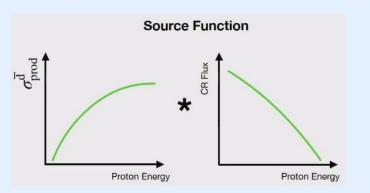
>

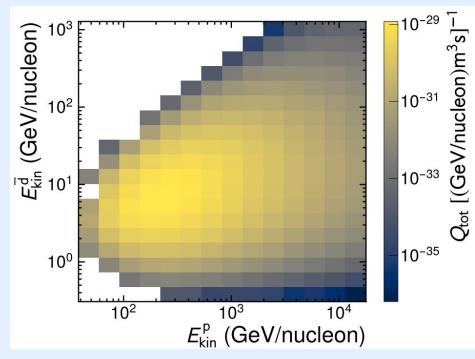
>

 $\succ$ 



>


 $\succ$ 


>

 $\succ$ 

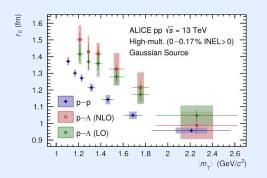
Production energy of antinuclei

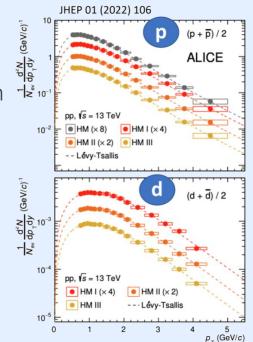
- Antideuteron source function as a function of kinetic energy of the incoming proton and produced antideuteron
- ➤ Antideuteron production predominantly for protons of E<sub>kin</sub>~200-500 GeV (√s ~ 19-30 GeV for p-H)





Šerkšnytė, et al. PHYSICAL REVIEW D 105, 083021 (2022)


# What do we need from NA61




NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays
 Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

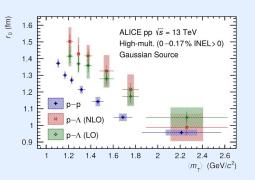
#### What we need from NA61 to study nuclei formation:

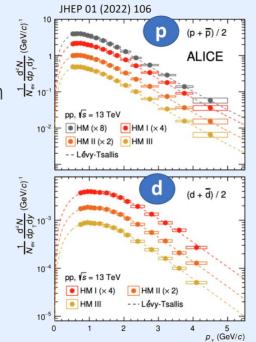
- ► Emission source size measurements via two-particle correlation
- ► (Anti)nucleon momentum distributions
- (Anti)nuclei production measurements





# What do we need from NA61





NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays
 Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

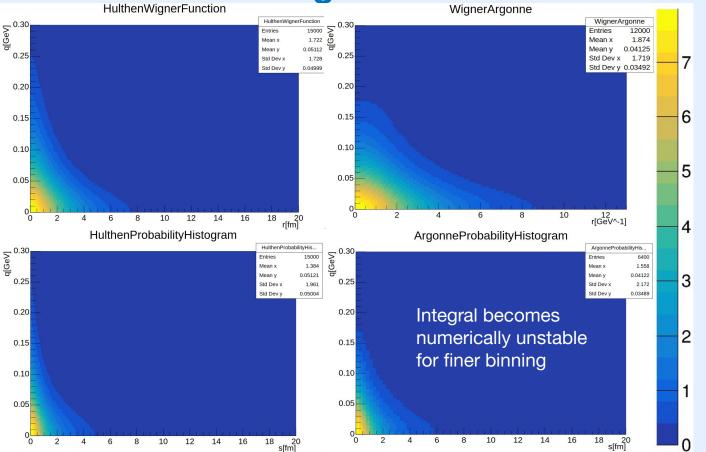
#### What we need from NA61 to study nuclei formation:

- Emission source size measurements via two-particle correlation
   (Anti)nucleon momentum distributions
- (Anti)nuclei production measurements

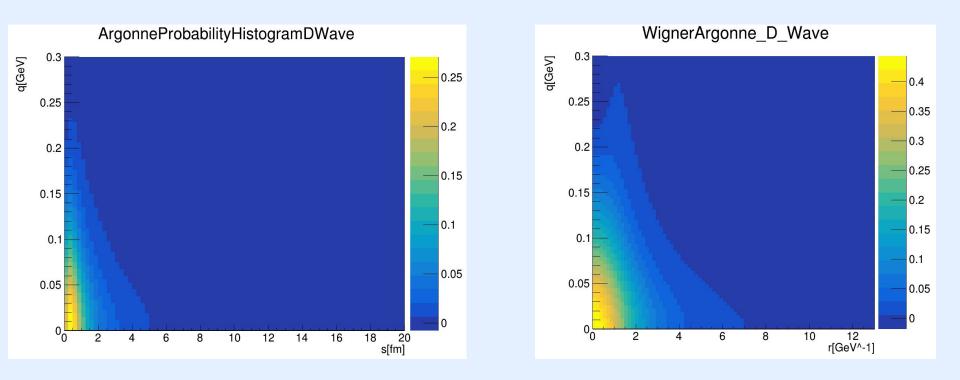
Thanks for the amazing Workshop!








# **Backup slides**


Future of antinuclei - Maximilian Horst @ NA61++/SHINE workshop 17/12/22

29

# **New Wiger functions/Probabilities**



# **Argonne D-State probability**

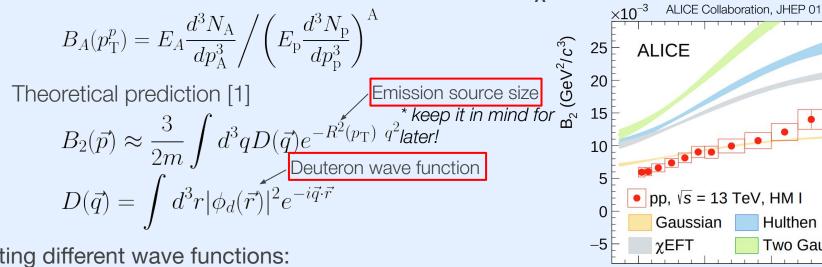


D-State probability is  $6\% \rightarrow Maximum \sim 11\%$  effect

#### Overview of (anti)nuclei data (anti)nuclei measurements



- No measurement of antideuterons in the energy region (~19-30 GeV) relevant for astrophysics
- ➤ Most measurements are very old (~60s and 70s)
- NA61's energy (17.3 GeV) would be a perfect candidate to study antinuclei for astrophysics


We need precise measurements at the energies of interest to constrain (anti)nuclei production!

| Experiment or<br>Laboratory | Collision                 | $p_{\rm lab}~({\rm GeV}/c)$ | $\sqrt{s}$ (GeV) |
|-----------------------------|---------------------------|-----------------------------|------------------|
| CERN                        | p + p                     | 19                          | 6.15             |
| CERN                        | $\mathbf{p} + \mathbf{p}$ | 24                          | 6.8              |
| Serpukhov                   | p + p<br>p + Be           | 70                          | 11.5             |
| CERN-SPS                    | p + Be<br>p + Al          | 200                         | 19.4             |
| Fermilab                    | p + Be                    | 300                         | 23.8             |
| CERN-ISR                    | p + p                     | 1497.8                      | 53               |
| CERN-ALICE                  | p + p                     | $4.3 \times 10^{5}$         | 900              |
| CERN-ALICE                  | p + p                     | $2.6 \times 10^{7}$         | 7000             |

No antideuteron data!

### **Modelling (anti)nuclei production** $B_{\Delta}$ predictions

Important observable in accelerator measurements: **B** 



Testing different wave functions:

- Hulthén: Favoured by low energy scattering experiments
- **Gaussian:** Best description of currently available ALICE data
- Two Gaussians: Approximates Hulthén, easy to use in calculations
- *x***EFT:** Favoured by modern nuclear interaction experiments (e.g. Femtoscopy)

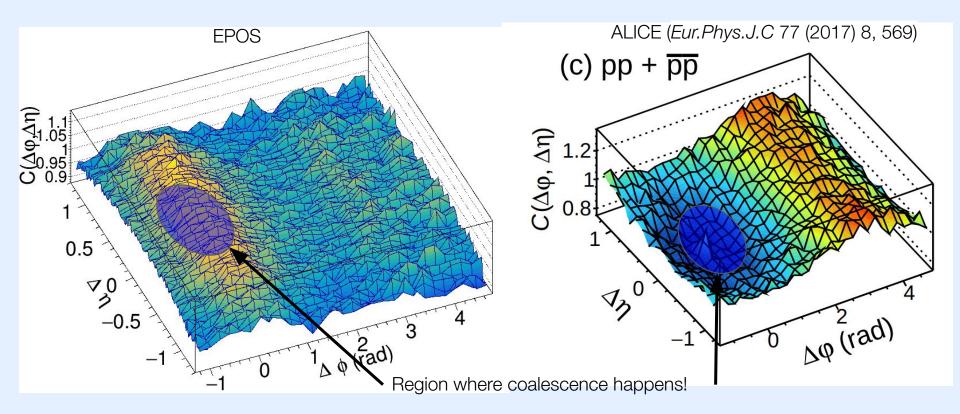
[1] Blum, Takimoto, PRC 99 (2019) 044913

1.0

0.5

Hulthen

1.5

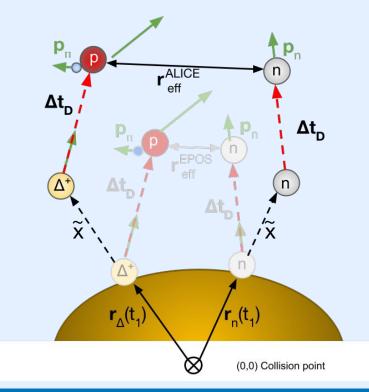

**Two Gaussians** 

2.0

 $p_{T}/A$  (GeV/c)

# **Correlations comparison**

#### $\Delta\eta$ - $\Delta\phi$ Correlation function




# The advanced source model in EPOS

Scheme

Propagation scheme:

- We obtain a scaling factor as a function of  $m_{\rm T}$  from the source size measurement
- We move the primordials out radially until we reach the scaled distance
- This distance  $(\tilde{x})$  is the same for both primordials of the pair

