NA61/SHINE and NA61++ measurements for the understanding of cosmic antinuclei

NA61++

Philip von Doetinchem

philipvd@hawaii.edu Department of Physics & Astronomy University of Hawai'i at Manoa http://www.phys.hawaii.edu/~philipvd

Status cosmic antinuclei searches

- Potential p excess in AMS-02 data above secondary background predictions at $R\sim 10$ GV was found in various studies \rightarrow significance level unclear
- Low-energy antideuterons are essentially free of astrophysics background
 - Sensitivity to a wide range of dark matter models, e.g.:
 - Braeuninger et al. Physics Letters B 678, 20–31 (2009)
 - Cui et al, JHEP 1011, 017 (2010)
 - Hryczuk et al., JCAP 1407, 031 (2014).
 - Korsmeier et al., Physical Review D 97, 103011 (2018)
 - Randall & Xu, JHEP (2020)
- AMS-02 reported the observation of antihelium candidates (~1/year)
- Search for antinuclei with independent technique is critical
- Review based on 2nd Cosmic-ray Antideuteron Workshop "Cosmic-ray ٠ Antinuclei as Messengers of New Physics: Status and Outlook for the New Decade" [JCAP08(2020)035, arXiv:2002.04163]

Dec 2022 - p.2

Uncertainties and NA61/SHINE

- Cosmic-ray propagation:
 - Fits of cosmic-ray nuclei data are very important to constrain cosmic-ray propagation models (e.g., B/C, d/α, Li/C, Li/O, Be/C, Be/O, B/O) and models depend on production cross sections of primary cosmic rays with the interstellar medium → NA61/SHINE measurements are important
- Inelastic interactions of antinuclei in the Galaxy
 → ALICE conducted cross section measurements
- Antinuclei formation process breaks the degeneracy between heavier antinuclei and antiprotons:
 - Antiproton production cross section not very well known
 - Coalescence: \overline{d} can be formed by an \overline{p} - \overline{n} pair if relative momentum is small compared to coalescence momentum p_o
 - Thermal model: Antinuclei directly formed at hadronization stage
 - Wigner-function based, semi-classical model has been developed

→ NA61/SHINE measurements are important

(Anti)nuclei coalescence

• (Anti)nuclei yield:

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^Z \left(E_n \frac{\mathrm{d}^3 N_n}{\mathrm{d} p_n^3} \right)^N \text{ with } B_A = A \left(\frac{4\pi}{3} \frac{p_0^3}{m_p} \right)^{A-1}$$

Doetinchem

NA61 for cosmic N

Dec 2022 - p.4

• use an event-by-event coalescence approach with hadronic generators

Coalescence modeling

D. Gomez-Coral et al., Phys Rev D 98, 023012 (2018)

Doetinchem

NA61 for cosmic N

From production to flux at Earth Šerkšnytė et al., Phys. Rev. D 105, 083021 (2022)

Propagation equation:

$$\frac{\partial \psi}{\partial t} = Q(\boldsymbol{r}, p) + \operatorname{div}(D_{\mathrm{xx}}\operatorname{grad}\psi - \boldsymbol{V}\psi) + \frac{\partial}{\partial p}p^2 D_{\mathrm{pp}}\frac{\partial}{\partial p}\frac{\psi}{p^2} - \frac{\partial}{\partial p}\left[\psi\frac{\mathrm{d}p}{\mathrm{d}t} - \frac{p}{3}(\operatorname{div}\cdot\boldsymbol{V})\psi\right] - \frac{\psi}{\tau},$$

Antideuteron flux at the top of the atmosphere

Dec 2022 - p.6

- D_{xx} , V, and D_{pp} are the spatial diffusion coefficient, the convection velocity, and the diffusive reacceleration coefficient, respectively.
- ψ/τ accounts for particles lost via decay, fragmentation and inelastic interactions in the Galaxy

Antihelium coalescence

All at the same time:

- expanded modified MC coalescence model to merging multiple antinucleons from p-p interactions
 - \rightarrow requires quite a bit of computing power (~5,000 years)
- use the p_o behavior from antideuterons
- Very good agreement with ALICE antihelium-3 data (p-p at √s=7TeV)

Issues of the coalescence model

- phase space for ion production depends on the available energy in the formation interaction
- highly sensitive to two-particle correlations between the participating (anti)nucleons
- (anti)neutron spectra are challenging to access experimentally, potential asymmetries should be evaluated
- hadronic generators failing to describe (anti)proton and (anti)neutron spectra automatically result in a shift of p₀
- **spin** is not considered
- not a QM model
- generators not really tuned for antiparticle production
 → use dedicated antiproton, deuteron, and antideuteron data

New NA61/SHINE p and d results

- Use of 158GeV/c p-p data from 2009/10/11 (60 million):
 - Significantly extended the \overline{p} phasespace coverage
 - First high-statistics d measurements in p-p in the most-relevant energy range for cosmic rays
 - Will be published soon (including d yield spectra, d/p ratio)
 - \rightarrow tune hadronic generators

Doetinchem

NA61 for cosmic N

Dec 2022 - p.9

Next step: coalescence improvements

• Following the ALICE approach, studiyng two-nucleon correlations in p-p data allows for extracting the size of the formation region $R(p_{\tau})$:

$$\mathcal{C}(k) = \mathcal{N} \frac{N_{\text{same}}(k)}{N_{\text{mixed}}(k)} = \int d^3 r S(r) |\Psi(r,k)|^2$$

• **Data-driven** quantum-mechanical description of coalescence:

$$B_2(p_T) \approx \frac{3}{2m} \int \mathrm{d}^3 q D(q) \exp\left(-R(p_T)^2 q^2\right) \text{ with } D(q) = \int \mathrm{d}^3 r |\varphi_d(r)|^2 \exp(-iqr)$$

NA61 for cosmic N

Dec 2022 - p.10

S: emission source function, ψ 2-(anti)nucleon wave function, φ internal (anti)deuteron wave function

Future studies and measurements

- Preliminary: current NA61/SHINE p-p data at 158GeV/c contains ~50 antideuteron candidates → ongoing
- Conduct the same analysis with existing p-p 400GeV/c data set
- More very-high statistics p-p data needed:
 - Take data with upgraded NA61/SHINE experiment (10-20x faster electronics, better TPC resolution, better TOF, etc.)
 - Goal: p-p data set on the order of 1-10 billion events
 - \rightarrow high-statistics antideuteron measurements
 - \rightarrow potential for seeing antihelium-3

NA61 for cosmic N

Propagation: High-Mass Nuclei

Relative Abundance

Particle Data Group 2022

Slides from M. Unger

Dec 2022 - p.12

High-Mass Nuclei: Experimental Challenges

Slides from M. Unger

 high-mass group (28-56) can saturate DAQ

 \rightarrow difficult, but feasible

Doetinchem

NA61 for cosmic N

Dec	202	22 -	p.1	3
-----	-----	------	-----	---

- Ideal range for relevant cosmic antinuclei cross section studies is p_{lab} =100-500GeV/c for p-p
- Full QM model for antinuclei formation needs to be further developed and validated
- More high-statistics p-p measurements are needed
 → upgraded NA61/SHINE ideally suited