

2022/12/17 NA61++/SHINE WS

Neutron Beam and Neutrino Physics with 3 GeV proton at MLF

Shoichi Hasegawa (JAEA; Japan Atomic Energy Agency) J-PARC

J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source

MLF: Neutron and Muon source for Material and Life Science

Neutron from Hg target

Motivation 1 to join NA61/SHINE low-E beamline

- The activities of the radioactive products were measured using Ge detector.
- Because of the time required for removal, only a relatively long half-life response can be measured.

-PARC Sterile Neutrino Search At J-PARC Spallation Neutron Source

- Self shield effect of mercury is large.
- Estimated results were in agreement within ±30%
- MLF want to measure neutron production with thin mercury target.
- There is the 2nd MLF plan, then neutron production data is important to optimize for 2nd mercury target.

Direct test of the LSND result with modern technics

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Signal

With an oscillation probability of

3.8 σ evidence for $v_{\mu} \rightarrow v_{e}$

 $(0.264 \pm 0.067 \pm 0.045)\%$.

Los Alamos Meson Physics Facility, LANL 1993-1998

Sterile Neutrino search

JSNS² (<u>J</u>-PARC <u>Sterile Neutrino Search</u> at J-PARC Spallation <u>Neutron Source</u>)

- Neutrino; μ^+ (Decay at Rest) $\rightarrow e^+ + v_e + \overline{v}_{\mu}$
- Target ; Gd-loaded + DIN Liquid Scintillator
- Detection; IBD(Inverse Beta Decay)
- JSNS²-I; Operating
 - Construction; 2018 -2019
 - Setting facility area
 Bring out during Maintenance term
 - 1st Run; 2020
 - Physics Run ;2021,2022
- JSNS²-II; Constructing
 - Construction; 2021 –
 - Setting out side of facility
 - Schedule
 2022; Fin to construct
 2023; Fill LS,
 Run

Motivation 2 to join NA61/SHINE low-E beamline

Comparison of MC Models

Various MCs are studied

- FLUKA (current default)
 ✓ Targe simulation only
- Geant4
 - ✓ V9.4p04 with QGSP_BERT
- PHITS
 - ✓ Most precise geometry
 - ✓ Default MLF design
- ⇒ 1.2 2 times difference is obtained as MC uncertainty

-	U	K/	4	

	$\pi^+ \to \mu^+ \to \bar{\nu_{\mu}}$	$\pi^- \to \mu^- \to \bar{\nu_e}$
π/p	6.49×10^{-1}	4.02×10^{-1}
$\mu/{ m p}$	3.44×10^{-1}	3.20×10^{-3}
$ u/\mathrm{p} $	3.44×10^{-1}	7.66×10^{-4}
ν after $1\mu s$	2.52×10^{-1}	4.43×10^{-4}

Geant4

	$\pi^+ \to \mu^+ \to \bar{\nu_{\mu}}$	$\pi^- \to \mu^- \to \bar{\nu_e}$
π/p	5.41×10^{-1}	4.90×10^{-1}
$\mu/{ m p}$	2.68×10^{-1}	3.90×10^{-3}
$\nu/{ m p}$	2.68×10^{-1}	9.34×10^{-4}
ν after $1\mu s$	1.97×10^{-1}	5.41×10^{-4}

PHITS

	$\pi^+ \to \mu^+ \to \bar{\nu_{\mu}}$	$\pi^- \to \mu^- \to \bar{\nu_e}$
π/p	6.93×10 ⁻¹	8.02×10 ⁻¹
$\mu/{ m p}$	4.46×10 ⁻¹	2.76×10 ⁻²
$ u/\mathrm{p} $	N/A	N/A
ν after $1\mu s$	N/A	N/A

Need to cross-section data of 3GeV Proton + Mercury target

Set-up

Beam condition
 Proton beam; 3(1,5,7)GeV

1) JSNS² Neutrino Flux

P + Hg -> π, K cross section
 Using NA61 detector
 + thin Hg target

2) MLF Neutron production

- Set film around target. Then gamma spectrum of activated film is measured with our Ge-detector
- Set neutron detector if event rate is low.

J-PARC Sterile Neutrino Search

Set-up

Beam condition
 Proton beam; 3(1,5,7)GeV

1) JSNS² Neutrino Flux

P + Hg -> π, K cross section
 Using NA61 detector
 + thin Hg target

2) MLF Neutron production

- Set film around target. Then gamma spectrum of activated film is measured with our Ge-detector
- Set neutron detector if event rate is low.

-PARC Sterile Neutrino Search

Preliminary;G4 Simulation

- Detector NA61/SHINE default
- Beam Proton, 3.82 GeV/c, pencil
- Target Carbon (2.5 x 2.5 x 2.0 cm)
- Positions Default + 2 pos near GTPC
- Magnetic Field setting 0 160 GeV

Measured by up GTPC and down GTPC, it covers 50% of the solid angles.

- 3 GeV proton experiment for MLF J-PARC
- MLF needs the neutron production data using 3GeV proton to improve the quality of neutron beam.
- JSNS² (the sterile neutrino search at MLF,J-PARC) requires the Pion, Kaon data to improve neutrino flux.
- For the improvement of beam and physics at MLF
 J-PARC, we want to take data using
 3 GeV proton beam with mercury.

Thanks!

Back up

