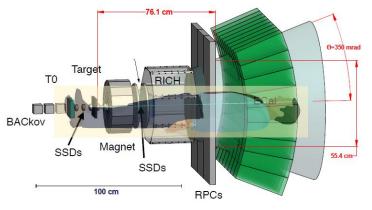

NA61++/SHINE: Physics opportunities from ions to pions

SHORT SUMMARY

What is NA61/SHINE

- Physics program
 - Strong interactions program
 - Hadron-production measurements for neutrino experiments
 - Hadron-production measurements for cosmic ray experiments
 - Large acceptance hadron spectrometer
 - Flexible detector set with possibilities for upgrades
 - Use various types of beams (ions to pions)

Existing or new experiments

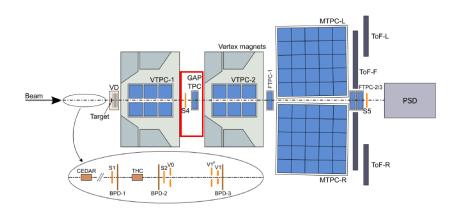

• NA60++

Measure:

- Thermal dimuons from QGP/hadronic phase: caloric curve for first order transition
- ρ - a_1 modifications: chiral symmetry restoration
- Quarkonium suppression: signal of deconfinement
- Hadronic decays of charmed mesons/baryons: QGP transport coefficients
- Further discussions on possible synergies with the program of NA61++ will be a very important aspect, with the goal of building a solid ensemble of measurements for the next decade
- COHERENT Coherent elastic neutrino-nucleus scattering
 - ♦ NA61++/SHINE can help! COHERENT will benefit from pion-production measurements with:
 - Maximal angular coverage decay-at-rest facilties need total production cross section
 - Low-energy protons SNS will operate using 1.3 GeV protons on *thick* targets
 ⇒ want measurements from 0.5 1.3 GeV incident protons, thin and thick targets?
 - Wide range of nuclei primarily Hg and W, but π^{\pm} from Al, Ni, and Fe as well
 - Production of π^{\pm} , π^{0} , η primarily π^{+} for ν , but others for dark matter studies

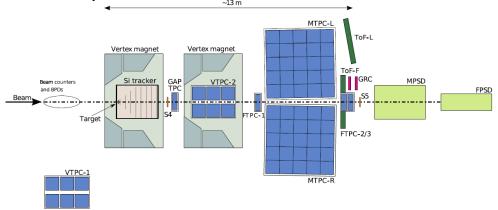
Existing or new experiments

 EMPHATIC - Experiment to Measure the Production of Hadrons At a Test beam In Chicagoland

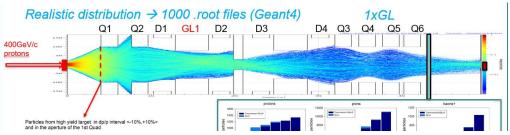

- EMPHATIC offers a *novel*, *table-top* approach to reducing the hadron production uncertainties by at least a factor of 2 with measurements of both thin and thick targets.
 - EMPHATIC is *complementary* to the existing efforts by NA61/SHINE to collect important hadron production data for improved flux predictions.
- What would we want from a future NA61++/SHINE?
 - In the first instance, any relevant data with carbon production target and 8 GeV proton beam
 - Ideally, a novel set-up to study <80 MeV/c backwards pion production
 - Rates, energies and angular distributions
 - Anti-protons (in forward direction) as a function of primary beam energy near 8 GeV
 - Data on heavier target materials, like tungsten, would also be useful for Phase-II

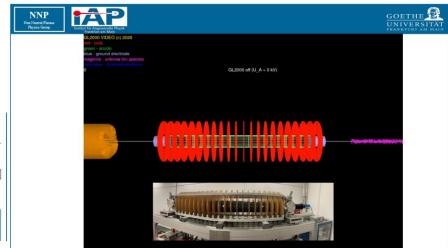
The COMET Experiment

Ideas for new technology in NA61++


Resistive technologies for Time Projection Chambers

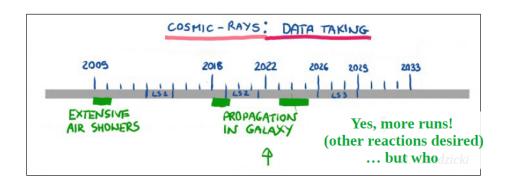
- Resistive Micromegas inherit from long and successful bulk Micromegas developments
- Strong interest of CERN for resistive technology
- Resistive readout shows good performances and large flexibility
- ► Highly interesting and promising R&D for resistive field cages




Si tracker in the magnetic field

Setup for charm correlation measurements

Gabor Lenses


Hadron-production measurements for cosmic

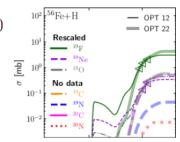
ray experiments

- Atmospheric neutrinos
 - At low energies (< 20GeV protons), there is data, some of it is good, but it is a struggle to make a consistent overall picture and there are large gaps in the phase space.
 - Further reduction in hadron production systematics:
 - 120 GeV NA61/SHINE data reduce interpolation uncertainty between 31 and 158 GeV
 - Potential for new low energy measurements reduce uncertainty where hadron production is uncertain

Galactic cosmic-ray (GCR) propagation and nuclear production cross sections

What next?

XS ranking (Génolini, DM, Moskalengo, Unger)


- \rightarrow Up to Si, then up to Fe (Z=17-25 AMS data not yet published)
- → Provide progenitors/targets required and estimated beam time

XS modelling (DM, Génolini...)

- → Update our XS database (extracted from EXFOR)
- \rightarrow Use machine learning to
 - predict unmeasured XS
 - ID key reactions (to measure) for models

- → (He) CNO, Ne, Mg, Si, and Fe main projectiles
- \rightarrow (2H, 3He) LiBeB, F, and sub-Fe main fragments

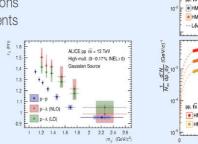
Debate with F: primary source (Boschini et al. 2021), XS (Ferronato Bueno et al. 2022), spatial dependent diffusion (Zhao et al. 2022)

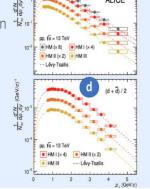
Hadron-production measurements for cosmic ray experiments

Measurmets for the Cosmic-ray Anti-nuclei

• Observation of ³He and ⁴He events would imply a drastic revision of cosmology and would request a more fundamental theory than the standard model of particle physics. A few routes have already been explored.

Antinuclei production studies

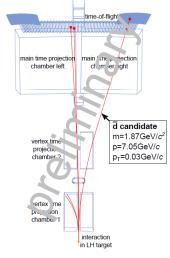

What do we need from NA61



- ➤ NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays
- ➤ Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

What we need from NA61 to study nuclei formation:

- > Emission source size measurements via two-particle correlation
- ➤ (Anti)nucleon momentum distributions
- > (Anti)nuclei production measurements



NA61/SHINE and NA61++ measurements for the understanding of cosmic antinuclei

Future studies and measurements

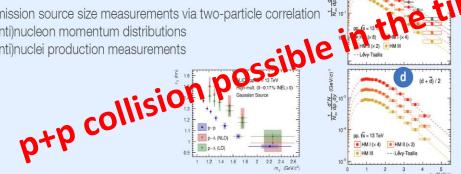
- Preliminary: current NA61/SHINE p-p data at 158GeV/c contains ~50 antideuteron candidates → ongoing
- Conduct the same analysis with existing p-p 400GeV/c data set
- More very-high statistics p-p data needed:
- Take data with upgraded NA61/SHINE experiment (10-20x faster electronics, better TPC resolution, better TOF, etc.)
- Goal: p-p data set on the order of 1-10 billion events
 - \rightarrow high-statistics antideuteron measurements
 - → potential for seeing antihelium-3

Hadron-production measurements for cosmic ray experiments

Measurmets for the Cosmic-ray Anti-nuclei

• Observation of ³He and ⁴He events would imply a drastic revision of cosmology and would request a more fundamental theory than the standard model of particle physics. A few routes have already been explored.

Antinuclei production studies

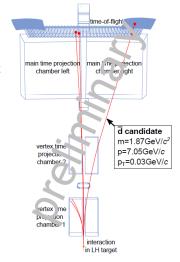

What do we need from NA61

➤ NA61 energy of √s~20 GeV is perfect to study antideuterons for cosmic rays

➤ Large acceptance for forward/backward rapidity give important insights for astrophysics (production at forward rapidity is poorly measured)

What we need from NA61 to study nuclei formation:

- ➤ Emission source size measurements via two-particle correlation
- (Anti)nucleon momentum distributions
- (Anti)nuclei production measurements



NA61/SHINE and NA61++ measurements for the understanding of cosmid antinuclei

- Preliminary: current NA61/SH Na Cl. data at 158GeV/c contains ~50 antideper real antidates → ongoing
- me analysis with existing p-p 400GeV/c data set

More very-high statistics p-p data needed:

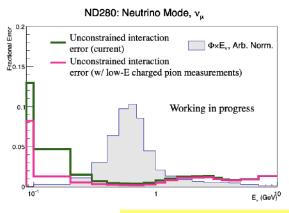
- Take data with upgraded NA61/SHINE experiment (10-20x faster electronics, better TPC resolution, better TOF, etc.)
- Goal: p-p data set on the order of 1-10 billion events
- → high-statistics antideuteron measurements
- → potential for seeing antihelium-3

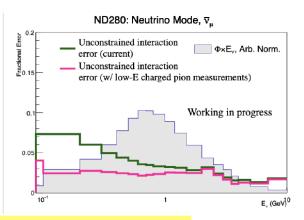
Hadron-production measurements for neutrino experiments

Thanks to NA61/SHINE data, the current error for neutrino flux predictions was reduced but still is space for improvement

T2K/HK

Plan of low momentum beam measurements


We will propose the following measurements


w/ 2cm thin target

14

- π^+ and π^- beam with 2 GeV/c for Al and Fe targets,
- π^+ and π^- beam with 8 GeV/c for Al, Fe and C targets

Expected improvements

We can improve the flux error less than 5%

DUNE FLUX AND MEASUREMENT NEEDS

CONCLUSION

- DUNE will make precise measurements of neutrino oscillation parameters and search for CP-violation and a variety of BSM physics
- All of DUNE's accelerator-based measurements rely on an accurate beam simulation
- Many of the interactions that will create neutrinos in the LBNF beam line have never been measured and are not well understood theoretically
- Highest DUNE hadron production needs
 - Replica target measurements (but will have to make these repeatedly)
 - Interactions not currently covered by data
 - Data over a range of incident energy and target nucleus
 - Covariance matrices for all datasets
 - Help from the HP community using these data

Thank You for Listening!

Hadron-production measurements for neutrino experiments

- Low-Energy Physics Opportunities
 - Low-Energy Beamline at H2 (Low-Energy = 1-13 GeV (2-13 GeV/c))

Physics Cases

Accelerator-based neutrino experiments (to study secondary hadron scatterings not covered by current data)

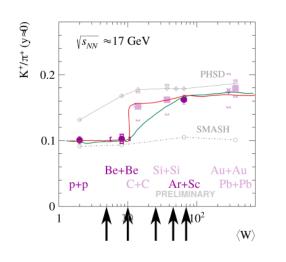
- Long-baseline: T2K / Hyper-K at J-PARC, LBNF/DUNE at FNAL
- Short-baseline: Booster Neutrinos (SBND, MicroBooNE, ICARUS) at FNAL

<u>Atmospheric neutrino experiments</u> (to study cosmic ray proton scatterings)

Sub-GeV and Multi-GeV neutrinos: Super-K, Hyper-K, DUNE

<u>Spallation neutron source neutrino experiments</u>

- JSNS² at J-PARC MLF (sterile neutrino search): hadron production on p+Hg at 3 GeV (3.82 GeV/c)
- COHERENT at ORNL (coherent drastic neutrino scattering): hadron production on p+Hg around 2 GeV/c


Muon experiments

- COMET at J-PARC (muon to electron): hadron production on p+X at 8 GeV (X = C, W, or heavy material)
- (potentially) Mu2e at FNAL: hadron production on p+W at 8 GeV

Strong interactions program

Proposal to measure collisions of light and intermediate mass nuclei

p _{beam} (A GeV/c)	$\sqrt{s_{NN}}$ (GeV)	¹⁰ B # days	¹⁶ O # days	²⁴ Mg # days	⁴⁰ Ar # days
13	5.1	7	7	7	7
30	7.6	7	7	7	7
150	16.8	7	7	7	7

- ullet $\sim 100 \mathrm{M}$ events per reaction
- The solid/compact targets are in favor due to possibility of installation in VD.

projectile	$^{4} He/^{10} B$	¹⁶ O	^{24}Mg	^{40}Ar
target	4 He(liquid)/ 9 Be- 12 C	¹⁶ O(water)	³² S	⁴⁵ Sc
	⁷ Li	¹⁹ F (LiF)	^{24}Mg	⁴⁰ Ca

Strong interactions program

- c cbar correlations
 - Measuring correlations of c and cbar quarks from the same pair forces one to seek for events with only a single c cbar -pair

Recall the requirement for a dominance of a single $c\bar{c}$ -pair production: $\frac{P(N_{c\bar{c}}>1)}{P(N_{c\bar{c}}=1)}\ll 1$

	$\langle c\bar{c}\rangle = 0.1$	$\langle c\bar{c}\rangle = 0.2$	$\langle c\bar{c}\rangle = 0.5$	$\langle c\bar{c}\rangle = 1$
$P(N_{c\bar{c}}>1)/P(N_{c\bar{c}}=1)$	0.05	0.1	0.3	0.7
$N_{ m true\ pairs}/N_{ m all\ pairs}$	91%	83%	66%	50%

	$\langle c \bar{c} \rangle = 0.1$	$\langle c\bar{c}\rangle = 0.2$	$\langle c\bar{c}\rangle = 0.5$	$\langle c\bar{c}\rangle = 1$
1 kHz	~ 1000 days	\sim 500 days	\sim 200 days	~ 100 days
10 kHz	~ 100 days	\sim 50 days	\sim 20 days	~ 10 days
100 kHz	~ 10 days	\sim 5 days	\sim 2 days	~ 1 day

- "It would be great for my experiment if NA61 would measure x+y->z reaction"
- Nice to hear this, and it's the beginning of a new measurement.
- But this will not make it happen. Measurements require resources, including scientists willing to do the actual work!
- How do we make the conditions right for people to join and do the work?

- Four options for future organization
 - Continuation of NA61: NA61++ = NA61
 - A new collaboration: NA61++ = NAXX
 - A hybrid model: NA61++ = NA61 + NAXX
 - Conversion to a facility: NA61++ = North Area Multiparticle Spectrometer Facility

- Four options for future organization
 - Continuation of NA61: NA61++ = NA61
 - A new collaboration: NA61++ = NAXX
 - A hybrid model: NA61++ = NA61 + NAXX
 - Conversion to a facility: NA61++ = North Area Multiparticle Spectrometer Facility

We need a strong physics case to continue measurements in the future

- Four options for future organization
 - Continuation of NA61: NA61++ = NA61
 - A new collaboration: NA61++ = NAXX
 - A hybrid model: NA61++ = NA61 + NAXX
 - Conversion to a facility: NA61++ = North Area Multiparticle Spectrometer Facility

We need a strong physics case to continue measurements in the future

The proposals for future measurements fit well with the current NA61 program

- Strong interactions program
- Hadron-production measurements for neutrino experiments
- Hadron-production measurements for cosmic ray experiments

Thank you very much for your excellent talks and participation in this workshop