Digital Signal Processing in RF Applications

Part II

Thomas Schilcher

PAUL SCHERRER INSTITUT

07 June 2007

CAS, Sigtuna, Sweden DSP – Digital Signal Processing

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - □ digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - cavity amplitude and phase
 - radial and phase loops
 - adaptive feedforward
 - system identification

RF cavity: amplitude and phase feedback

task: maintain phase and amplitude of the accelerating field within given tolerances to accelerate a charged particle beam

operating frequency:

few MHz / ~50 MHz (cyclotrons) - 30 GHz (CLIC)

required stability:

10⁻² – 10⁻⁴ in amplitude (1% - 0.01%), 1° - 0.01° (10⁻² – 10⁻⁴ rad) in phase (0.01° @ 1.3 GHz corresponds to 21 fs)

often: additional tasks required like exception handling, built-in diagnostics, automated calibration, ...

design choices:

- analog / digital / combined
- amplitude/phase versus IQ control

□ control of

- single cell/multicell cavity with one RF amplifier (klystron, IOT,...)
- string of several cavities with single klystron (vector sum control)
- pulsed / CW operation
- normal / superconducting cavities

RF cavity: amplitude and phase feedback (2)

Analog/Digital LLRF comparison – Flexibility (ALBA)

CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

Δ

RF cavity: amplitude and phase feedback (3)

basic feedback loop:

RF cavity: amplitude and phase feedback (4)

for output y :

measurement error n behaves like a change in the setpoint r (e.g. I/Q sampling error...)

(e.g. I/Q sampling error...) \rightarrow output y should be insensitive for low frequencies output disturbances w \longrightarrow S should be small (\rightarrow high gain with the controller to get GC>>1) (performance)

trade-off

between

T should be small

(robustness)

RF cavity: amplitude and phase feedback (5)

LTI feedback: Bode integral theorem - waterbed effect

• if *GC* has no unstable poles and there are two or more poles than zeros: (continuous: no poles in the right hand plane; discrete: no poles outside unity circle)

 Small sensitivity at low frequencies must be "paid" by a larger than 1 sensitivity at some higher frequencies "waterbed effect"

RF cavity: amplitude and phase feedback (6)

representation of RF cavity (transfer function / state space)

simplified model: LCR circuit

- $\mathbf{V}(t)$: cavity voltage
- $\mathbf{I}(t)$: driving current (from generator and beam)
- ω_0 : resonance frequency of undamped cavity
- Q_L : loaded quality factor of cavity
- R_L : cavity resistance incl. external load

differential equation for driven LCR circuit:

$$\ddot{\mathbf{V}}(t) + \frac{\omega_0}{Q_L}\dot{\mathbf{V}}(t) + \omega_0^2\mathbf{V}(t) = \frac{\omega_0R_L}{Q_L}\dot{\mathbf{I}}(t)$$

stationary solution for a harmonic driven cavity:

$$V(t) = \hat{V} \cdot \sin(\omega t + \psi)$$

$$\hat{V} \approx \frac{R_L I_0}{M_L I_0}$$

ampl.:

$$\frac{R_L I_0}{\sqrt{1 + (2Q_L \frac{\Delta\omega}{\omega})^2}}$$

detuning $\tan \psi \approx 2Q_L \frac{\Delta \omega}{\omega}$

bandwidth:
$$\omega_{1/2} = rac{\omega_0}{2Q_L}$$

detuning:

$$\Delta\omega = \omega_0 - \omega$$

07 June 2007

RF cavity: amplitude and phase feedback (7)

separate fast RF oscillations from the **slowly** changing amplitude/phases:

 $\begin{pmatrix} -\Delta\omega \\ \dots \end{pmatrix} \cdot \begin{pmatrix} V_r \\ V_r \end{pmatrix} +$

(slowly: compared to time period of RF oscillations)

0

 $R_L \omega_{1/2}$

 $\mathbf{I}(t) = \begin{pmatrix} I_r(t) \\ I_i(t) \end{pmatrix} \cdot e^{i\omega t}$ (notation: real and imaginary parts instead of I/Q values)

Laplace transformation: state space: $\underbrace{\begin{pmatrix} V_r(s) \\ V_i(s) \end{pmatrix}}_{(V_i(s))} = \underbrace{\frac{\omega_{1/2}}{\Delta\omega^2 + (s + \omega_{1/2})^2} \begin{pmatrix} s + \omega_{1/2} & -\Delta\omega \\ \Delta\omega & s + \omega_{1/2} \end{pmatrix}}_{(\Delta\omega)} \cdot \underbrace{\begin{pmatrix} R_L \cdot I_r(s) \\ R_L \cdot I_i(s) \end{pmatrix}}_{(R_L \cdot I_i(s))}$ $\dot{\mathbf{x}}(t) = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{u}(t)$ $\mathbf{y}(t) = \mathbf{C} \cdot \mathbf{x}(t)$ $V(s) \qquad H_{cav}(s)$ U(s) $\mathbf{x}(t) = \begin{pmatrix} V_r(t) \\ V_i(t) \end{pmatrix} \quad \mathbf{u}(t) = \begin{pmatrix} I_r(t) \\ I_i(t) \end{pmatrix}$ cavity transfer matrix (continuous) $\mathbf{A} = \begin{pmatrix} -\omega_{1/2} & -\Delta\omega \\ \Delta\omega & -\omega_{1/2} \end{pmatrix} \qquad \mathbf{C} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} R_L \omega_{1/2} & 0 \\ 0 & R_L \omega_{1/2} \end{pmatrix} \qquad \mathbf{y}(t) = \mathbf{x}(t)$ z transformation (continuous \rightarrow discrete with zero order hold): $H(z) = \frac{\omega_{12}}{\Delta \omega^2 + \omega_{12}^2} \left[\frac{\omega_{12}}{\Delta \omega} - \frac{\Delta \omega}{\omega_{12}} \right] - \left(\frac{\omega_{12}}{\Delta \omega^2 + \omega_{12}^2} \cdot \frac{z - 1}{z^2 - 2ze^{\omega_{12}T_s} \cdot \cos(\Delta \omega T_s) + e^{2\omega_{12}T_s}} \right)$ let matlab do the job $\left\{ \left((z - e^{\omega_{12}T_{s}} .\cos(\Delta \omega T_{s})) \cdot \begin{bmatrix} \omega_{12} & -\Delta \omega \\ \Delta \omega & \omega_{12} \end{bmatrix} \right) - e^{\omega_{12}T_{s}} .\sin(\Delta \omega T_{s}) \cdot \begin{bmatrix} \Delta \omega & \omega_{12} \\ -\omega_{12} & \Delta \omega \end{bmatrix} \right\}$ for you!

RF applications

 $\mathbf{V}(t) = \begin{pmatrix} V_r(t) \\ V_i(t) \end{pmatrix} \cdot e^{i\omega t}$

 $\binom{V_r}{V_i} =$

 $-\omega_{1/2}$

RF cavity: amplitude and phase feedback (8)

properties of cavity transfer functions:

$$H_{cav}(s) = \frac{\omega_{1/2}}{\Delta\omega^2 + (s + \omega_{1/2})^2} \begin{pmatrix} s + \omega_{1/2} & -\Delta\omega \\ \Delta\omega & s + \omega_{1/2} \end{pmatrix} = \begin{pmatrix} H_{11}(s) & H_{12}(s) \\ H_{21}(s) & H_{22}(s) \end{pmatrix}$$

RF cavity: amplitude and phase feedback (9)

example: loop analysis in frequency domain (simplified model !)

Gain margin at least between 6 and 8dB Phase margin between 40° and 60°

CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

frequency [Hz]

RF cavity: amplitude and phase feedback (10)

example: loop analysis in frequency domain

T. Schilcher

RF cavity: amplitude and phase feedback (11)

example: loop analysis in frequency domain

 $\begin{array}{rl} \mbox{superconducting cavity:} & Q_L = 3 \cdot 10^6 \\ f_0 = 1.3 \ \mbox{GHz} & \omega_{1/2} = 216 \ \mbox{Hz} \end{array}$

choose parameter such that

- dominant disturbance frequencies are suppressed
- no dangerous lines show up in the range where the feedback can excite
- system performance will not be spoiled by sensor noise due to increasing loop gain

RF cavity: amplitude and phase feedback (12)

example: loop analysis in frequency domain

superconducting cavity: $Q_L = 3.10^6$

 $\omega_{1/2} = 216 \text{ Hz}$

variation of the loop delay

(boundary condition:

keep gain margin constant at 8 dB; $K_i=0.1$)

t _D	К _р	loop bandwidth			
		(-3 UB)			
5 µs	87	11.9 kHz			
3 µs	145	20.6 kHz			
2 µs	223	32.2 kHz			
1.5 µs	278	40.3 kHz			
1.0 µs	436	63.6 kHz			
0.75 µs	539	78.6 kHz			
0.5 µs	832	121 kHz			
0.3 µs	1303	190 kHz			

➡ total loop delay is an important parameter; keep it as small as possible!

CAS, Sigtuna, Sweden DSP – Digital Signal Processing T. Schilcher

14

RF cavity: amplitude and phase feedback (13)

→ design of "optimal" controller under study at many labs...

07 June 2007

RF cavity: amplitude and phase feedback (14)

cavities

superconducting	normal conducting		50 ញ				
• Q _L : ~few 10 ⁵ - 10 ⁷ cavity time constants	• Q _L : ~10 – 10 ⁵ cavity time cons	stants] 050	possible	gain		
τcav = QL/(πfRF): ~ ~few 100 μs bandwidth	τ _{cav} : ~ bandwidth	√few μs	-100	10 ²	10 ⁴ frequency [Hz]	10 ⁶	
$f_{1/2} = f_{RF}^{\prime} (2Q_L)$: ~few 100 Hz	f _{1/2} : ~	~100 kHz	<u> </u>	_	~		
 feedback loop delay small compared to τ_{cav} 	 ✓ feedback loop de order of τ_{cav} 	elay in the	9 -100 -200 -300	$\tau = 0.5 \ \mu s$ $\tau = 0.75 \ \mu s$ $\tau = 1 \ \mu s$ $\tau = 2 \ \mu s$ $\tau = 10^{2}$	=3 μs =5 μs =17 μs	- <u>-180°</u>	
			Q	$=2.10^{4}$	frequency [Hz]	10	

loop latency limits high feedback gain for high bandwidth cavities!

if the gains/bandwidths achieved by digital feedback systems are not sufficient

→ analog/digital hybrid system might be an alternative !?

 f_{RF} =324 MHz

amplitude and phase feedback: example

LLRF: J-PARC linac (RFQ, DTL, SDTL)

- → 400 MeV proton linac
- pulsed operation; rep. rate: 12.5/25 Hz; pulse length: ~500-650 μs
- vector sum control
- * normal conducting cavities; $Q_L \sim 8'000-300'000$ $\tau_{cav} \sim 100 \ \mu s$

requirements / achieved:

→ amplitude: < +-1% / < +-0.15%</p>

Balcelona

FPGA board

PGA

FPGA .

→ phase: < +-1° / < +-0.15°
 </p>

combined DSP/FPGA board

07 June 2007

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - □ digital down conversion (DDC)
- 3. upconversion
- 4. algorithms in RF applications
 - feedback systems
 - cavity amplitude and phase
 - radial and phase loops
 - adaptive feedforward
 - system identification

Feedbacks in hadron/ion synchrotrons

booster synchrotrons:

capture and adiabatically rebunch the beam and accelerate to the desired extraction energy.

Beam Control System

task: control of

- □ RF frequency during the ramp (large frequency swings of up to a factor of ten, usually from several 100 kHz to several 10 MHz)
- cavity amplitude and phase (ampl. can follow a pattern during acceleration)
- mean radial position of the beam
- phase between beam and cavity RF \longrightarrow deviations from Φ_s will lead to (synchronous phase Φ_s)
- synchronization to master RF phase (to synchronize the beam transport to other accelerator rings)

in reality: errors due to phase noise, B field errors, power supply ripples, ...

07 June 2007

Typical LEIR commissioning cycle.

$$\frac{dB}{B} = \gamma^2 \frac{df}{f} + (\gamma^2 - \gamma_{tr}^2) \frac{dR}{R}$$

synchrotron oscillations

19

Beam Control System

frequency program:

- 1) calculate frequency based on the B field, desired radial position
- 2) optimize the freq. ramp to improve injection efficiency
- 3) generate dual harmonic RF signals for cavities (bunch shaping)

beam phase loop

- damps coherent synchrotron oscillations from
- 1) injection errors (energy, phase)
- 2) bending magnet noise
- 3) frequency synthesizer phase noise

radial loop

keeps the beam to its design radial position during acceleration

cavity amplitude loop

- 1) compensates imperfections in the cavity amplifier chain
- 2) amplitude has to follow a ramping function

synchronization loop (not shown)

locks the phase to a master RF

Beam Control System: from analog to digital

How do we setup the control loops? model required

in '80s: DDS/NCO replace VCO (VCO: lack of absolute accuracy, stability limitations if freq. tuning is required over a broad range)

in recent years (LEIR, AGS, RHIC): fully digital beam control system

- digitize RF signals (I/Q, DDC)
- all control loops are purely digital
- feedback gains: function of the beam parameters (keep the same loop performances through the acceleration cycle)

Radial and phase loops

beam dynamics delivers the differential equations 🗪 transfer functions

transfer functions without derivation:

RF freq. (NCO output) to phase deviation of the beam from the synchronous phase

RF freq. (NCO output) to radial position \boldsymbol{R}

model of the system:

 $\omega_{s} = \omega_{s}$ (E): synchrotron frequency, depend on the beam energy $b=b(E,\Phi_{s})$: function of energy, synchronous phase since energy varies along the ramp time varying model ! LPV: linear parameter varying model

 $H_{\phi_B}(s) = \frac{\Delta \phi_B}{\Delta \omega_{RF}} = \frac{s}{s^2 + \omega_S^2}$

 $H_R(s) = \frac{R}{\Delta\omega_{RF}} = \frac{b}{s^2 + \omega_S^2}$

design of the controller: parameters have to be adjusted over time to meet the changing plant dynamics (guarantee constant loop performance and stability)

Phase loop: example

implementation example (test system for LEIR): **PS Booster** @ CERN

Radial loop: example

implementation example (test system for LEIR): PS Booster @ CERN

Digital Signal Proces T. Schilcher

LINTVERSITET

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - □ digital down conversion (DDC)
- 3. upconversion

4. algorithms in RF applications

- feedback systems
 - cavity amplitude and phase
 - radial and phase loops

adaptive feedforward

system identification

Adaptive Feedforward

goal:

- suppress repetitive errors by feedforward in order to disburden the feedback
- cancel well known disturbances where feedback is not able to (loop delay!)
- adapt feedforward tables continuously to compensate changing conditions

warning:

adding the error (loop delay corrected) to system input **does not work**! (dynamics of plant is not taken into account)

How to obtain feedforward correction?

we need to calculate the proper input which generates output signal -e(k)

inverse system model needed!

Adaptive Feedforward (2)

in reality: model for plant not well known enough

- □ system identification → model
- measure system response (e.g. by step response measurements)

- in successive measurements: apply $\Delta u(t_k)$ and measure response $\Delta \vec{y}$
- \implies results in *R* (with some math depending on the test input)
- invert response matrix $T=R^{-1}$ (possible due to definition of sampling time $\tau_k = t_k + \tau_d$) $\Delta \vec{u} = \mathbf{T} \cdot \Delta \vec{v}$

$$\Delta \vec{\mathbf{f}} = \mathbf{T} \cdot \vec{\mathbf{e}} = \mathbf{T} \cdot (\vec{\mathbf{r}} - \vec{\mathbf{y}})$$

Adaptive Feedforward (3)

pulsed superconducting 1.3 GHz cavity: works fine in principle

but:

- remeasure T when operating point changes (amplitude/phase) (non-linearities in the loop)
- response measurement could not be fast enough
 - need for a fast and robust adaptive feedforward algorithm!

Adaptive Feedforward (4)

"time reversed" filtering:

- developed for FLASH, in use at FLASH/tested at SNS
- works only for pulsed systems
- not really understood but it works within a few iterations!

recipe:

- record feedback error signal e(t)
- time reverse $e(t) \rightarrow e(-t)$
- \blacksquare lowpass filter e(-t) with ω_{LP}
- reverse filtered signal in time again
- shift signal in time (∆t_{AFF}) to compensate loop delay
- add result to the previous FF table

Outline

- 1. signal conditioning / down conversion
- 2. detection of amp./phase by digital I/Q sampling
 - □ I/Q sampling
 - □ non I/Q sampling
 - □ digital down conversion (DDC)
- 3. upconversion

4. algorithms in RF applications

- feedback systems
 - cavity amplitude and phase
 - radial and phase loops
- adaptive feed forward
- system identification

System Identification in RF plants

- **goal:** design (synthesis) of high performance cavity field controllers is model based;
 - mathematical model of plant necessary

system identification steps

- record output data with proper input signal (step, impulse, white noise)
- choose model structure
 - □ grey box (preserves known physical structures with a number of unknown free parameters)
 - black box (no physical structure, parameters have no direct physical meaning)
- estimate model parameter (minimize e(t))
- validate model with a set of data not included in the identification process

 θ : parameter set

System Identification in RF plants (2)

example:

pulsed high gradient superconducting cavities with Lorentz force detuning LPV: linear parameter varying model

System Identification in RF plants (3)

example: identification of Lorentz force detuning in high gradient cavity

Conclusion/ Outlook

- performance is very often dominated by systematic errors and nonlinearities of sensors and analog components
- extensive diagnostics in digital RF systems allow automated procedures and calibration for complex systems (finite state machines...)
- digital platforms for RF applications provide playground for sophisticated algorithms

Now it's your turn to contribute to this exciting field!

