

Digital Signal processing in Beam Diagnostics

Lecture 1

Ulrich Raich
CERN AB - BI
(Beam Instrumentation)

Overview

- Introduction
 - Layout of a measurement instrument
 - Types of measurements to be made on the accelerator
- The Tune
 - What is the Q value and why is it important
 - The electronics layout
 - Treatment of the BPM signal with a DSP
 - Further improvements
- Measurements of trajectories and orbits
 - The sensors
 - Different beam types
 - Synchronization
 - Baseline correction
 - RF gymnastics

Elements of a beam diagnostic system

- The sensor
- Front end electronics (in the tunnel)
- Long cable from the tunnel to the equipment area
- Converter for sensor signals to digital values
- Data acquisition and control
- Transformation of the acquires values into humanly understandable machine parameter values
- Transfer to the control room
- Display in form of tables of graphs

A beam parameter measurement

Tune measurements

- When the beam is displaced (e.g. at injection or with a deliberate kick, it starts to oscillate around its nominal orbit (betatron oscillations)
- Measure the trajectory
- Fit a sine curve to it
- Follow it during one revolution

Why do we need to know the tune?

 Transverse resonances are created for certain tune values

Tune Diagram

$$l \cdot Q_x + m \cdot Q_y = r$$

The Sensors

The kicker

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Tune measurements with a single PU

Calculating the tune

- Kick the beam in short intervals (min. 5ms)
- The signal contains (slow) closed orbit variations due to acceleration which must be filtered out (BOSS = Beam Orbit Signal Suppressor)
- Signal contains the mode-frequencies:

$$f_{\beta} = (m \pm Q) f_{rev}$$

- The integer part is constant
- F_{rev} changes during acceleration => digitize the signal with F_{rev} and perform FFT analysis

$$q = k_s \frac{n_\beta}{N}$$

- DFT assumes that data constitutes a cycle in a periodic system
 Use windowing to avoid discontinuities when periodically extending the
 signal
- Peak find routine
- Interpolation to increase precision of Q value
- Digital treatment must be finished within 5 ms

The Acquisition Electronics

Kicker + 1 pick-up

- Measures only non-integral part of Q
- Measure a beam position at each revolution

Fourier transform of pick-up signal

Periodic extension of the signal and Windowing

Windowing

The Discrete Fourier assumes one cycle of a repetitive signal.

Blackman-Harris Window is used

Each sample is multiplied with a coefficient

Coefficients are precalculated and stored in a table

Peak search algorithm

- Power value is bigger than its predecessor
- Power value is bigger than its successor
- Power value is biggest in the whole spectrum
- The power value is at least 3 times bigger than the arithmetic mean of all power bins.

Q interpolation

Betatron signal is not a pure Harmonic but includes rev. freq Harmonics, noise ...
The windowing process is not Perfect
Coherent betatron signal is Damped in the time domain

$$V(n_{\beta} - 1) = a(n_{\beta} - 1)^{2} + b(n_{\beta} - 1) + c$$

$$V(n_{\beta}) = an_{\beta}^{2} + bn_{\beta} + c$$

$$V(n_{\beta} + 1) = a(n_{\beta} + 1)^{2} + b(n_{\beta} + 1) + c$$

Q-Measurement Results

Improvements

Restrict the power spectrum to smaller bandwidth Do Fourier Transform on many more sampled values (use algorithm in FPGA to get the necessary speed) Measure coupling between planes

Results of Q measurements from the CERN SPS

Measurements without excitation

Waterfall model of Fourrier spectra

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Trajectory and Orbit measurements

Definitions:

Trajectory: The mean positions of the beam during 1 turn

Orbit: The mean positions over many turns for each of the

BPMs

The trajectories must be controlled at injection, ejection, transition Closed orbits may change during acceleration or RF "gymnastics"

The PUs

The PS, a universal machine

The super cycle

Beams in the PS

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

RF Gymnastics

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

More RF changes

The AD beam is first equally distributed along the PS ring but then squeezed together By changing the harmonic in steps 8,10,12,... 20

Analogue signal treatment

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Radiation problems

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Radiation Levels: 40 kGy/y at 1.3 m 1kGy/y on the floor 40 Gy/y in the gap

Calculating the position

Red: The sum signal

Green: The difference signal

Procedure:

Produce integration gates and Baseline signals Baseline correct both signals Integrate sum and difference signals and store results in memory Take external timing events into account e.g. harmonic number change, γ-transition etc.

Trajectory readout electronics

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Baseline restoration

Low pass filter the signal to get an estimate of the base line Add this to the original signal

Problems with the baseline restorer

Simulated signal

After high pass filter

Expected baseline corrected signal

What we get!

Baseline correction

- Capacitive coupling to the beam
- DC is not passed
- The signal is differentiated
- Baseline correction through integration

Following the accelerating frequency

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

$$F_{rf} = \frac{R_{m}Q_{0}hB}{2\pi R_{0}m_{p}\sqrt{1 + \left\{\frac{R_{m}Q_{0}B}{m_{p}c}\right\}^{2}}}$$

 $\begin{array}{lll} c & speed \ of \ light \\ Q_0 & elementary \ charge \\ mp & proton \ mass \\ R_m & magnetic \ bending \ radius \\ R_0 & machine \ mean \ orbit \ radius \\ h & harmonic \ number \\ B & magnetic \ field \end{array}$

Revolution frequency calculated from the measured gate frequency

Synchronisation

Creating a frequency reference:

- Numerical PLL
- DDS at F_{rev}
- Lookup table generates local oscillator and integration gate

- Insensitive to filling patterns
- Independent of signal polarity
- Can be made to deal cleanly with RF gymnastics

Splitting the filter

on Digital Signal Processing Sigtuna 2007

Integration

Base line correction is needed to remove sensitivity to gate length Integration is simple addition of baseline-corrected samples

Embedded logic state analyser

Results from signal treatment

The integration gate is always aligned with the beam pulse

Bunch splitting

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Harmonic number changes

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

RF gymnastics in PS have special requirements:

- · Choose signal from several possible sources
- Produce several LO harmonic numbers
- · Produce appropriate gate timings
- Switch from one to another dynamically
- WITHOUT LOSING LOCK!

External timing

Position calculations

U. Raich CERN Accelerator School on Digital Signal Processing Sigtuna 2007

Relative position

Problems: Still too much noise Could be due to

- Not good enough baseline correction
- Too low sampling frequency (60 MHz)
- gate position
- Fixed point algorithms

