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1.Control Theory
Objective:
The course on control theory  is concerned with the analysis and design of closed loop 
control systems.

Analysis:
Closed loop system is given           determine characteristics or behavior.

Design:
Desired system characteristics or behavior are specified        configure or synthesize closed 
loop system.

continued…
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1.Introduction
Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are 
determined, at least in part, by certain responses of the system (we call these outputs).

System
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System
outputs 

Closed loop system 
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Definitions:
The system for measurement of a variable (or signal) is called a sensor.
A plant of a control system is the part of the system to be controlled.
The compensator (or controller or simply filter) provides satisfactory  
characteristics for the total system.

Two types of control systems:

A regulator maintains a physical variable at some constant value in the
presence of perturbances.
A servomechanism describes a control system in which a  physical variable is    

required to follow, or track some desired time function (originally applied in order 
to control a mechanical position or motion).

System 
input Error Plant
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Closed loop control system

System 
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1.Introduction
Example 1:  RF control system

Goal:
Maintain stable gradient and phase.
Solution:
Feedback for gradient amplitude and phase.

continued…
Phase detector

~~

+-

Phase 
controller

amplitude
controller Klystron cavity

Gradient
set point

Controller



5
CAS-DSP, Sigtuna 2007 – Control Theory – S. Simrock

1.Introduction
Model:
Mathematical description of input-output relation of components combined with block 
diagram.

Amplitude loop (general form):

Klystron
cavity

amplifier

controllerReference
input outputRF power

amplifier

Monitoring 
transducer

_

Gradient detector

plant+
error
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1.Introduction
RF control model using “transfer functions”

A transfer function of a linear system is defined as the ratio of the Laplace 
transform of the output and the Laplace transform of the input with I. C .’s =zero.

Input-Output Relations

Transfer FunctionOutputInput

U(s) Y(s) P(s)K(s)G(s) =

E(s) Y(s)

Y(s)

(s)G(s)HL(s) c=

R(s) L(s)L(s)M(s))1(T(s) 1−+=

Gradient detector

Klystron

cavity

controller

Reference  input
Error

Output

_

Control input

P(s)K(s)R(s)

M(s)

Y(s)E(s)
U(s)

+ ( )sHc
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1.Introduction
Example2:  Electrical circuit

Differential equations:
( ) (t)ν dττi

C
1 i(t)R i(t)R 1

t

0
21 =++ ∫

( ) (t)ν dττi
C
1 i(t)R 2

t

0
2 =+ ∫

Laplace Transform:
(s)VI(s)

Cs
1 I(s)R I(s)R 121 =
⋅

++

(s)VI(s)
Cs

1 I(s)R 22 =
⋅

+

Transfer function:

1s)CR(R
1sCR

(s)V
(s)VG(s)

21

2

1

2

+⋅+
+⋅⋅

==

(t)V1 (t)V2

i(t) 1R

2R
C

1 VInput       ,output   2V
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1.Introduction
Example 3: Circuit with operational amplifier

+-

.

sCR
1sCR

(s)V
(s)VG(s)

1

2

i

0

⋅⋅
+⋅⋅

−==

It is convenient to derive a transfer function for a circuit with a single operational 
amplifier that contains input and feedback impedance:

+-

(s)Z f

(s)Zi

I(s)

(s)Vi (s)Vo

.

iV
oV

1i 1R 2R C

(s)  IR(s)V 11i = (s)I
Cs

1R(s)V 12o ⎟
⎠
⎞

⎜
⎝
⎛

⋅
+−=and

(s) I(s) Z(s)V ii = (s)Z
(s)Z

(s)V
(s)VG(s)

i

f

i

o −==(s) I(s)Z(s) V fo −=and
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Model of Dynamic System
We will study the following dynamic system:

y(t)
u(t)

γ k

1m =

Parameters:
: spring constant
: damping constant
: force

Quantity of interest:
: displacement from equilibrium 

k
γ
u(t)

y(t)

Differential equation: Newton’s third law

( ) ( ) ( ) ( )tutyγ tk yFty ext +−−== ∑ &&&

( ) ( ) ( ) ( )
 

tutk ytyγty =++ &&&

( ) ( ) 00 y0y , y0y && ==

( )1m =

-Equation is linear  (i.e. no        like terms).

-Ordinary (as opposed to partial e.g.                            )

-All coefficients constant: 

( ) 0x,tf
tx

  =
∂
∂

∂
∂

=

( ) ( ) γ tκ ,γt k ==

2y&

for all t
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Model of Dynamic System
Stop calculating, let’s paint!!!

Picture to visualize differential equation

1.Express highest order term (put it to one side)

( ) ( ) ( ) ( )tutyγ tk yty +−−= &&&

2.Putt adder in front

3.Synthesize all other terms using integrators!

( )tu ( )ty&&

( )tk y−
( )tyγ &−

+

Block diagram
+

-
-

( )tu ( )ty& ( )ty

γ

k

( )ty&&
∫ ∫
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2.1 Linear Ordinary Differential Equation (LODE)
General form of LODE:
( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01

m
m01

1n
1n

n +++=++++ −
− &&

m ,n Positive integers, m01n10 ,...,b, b,...,a,aa − real numbers.

Mathematical solution: hopefully you know it

Solution of LODE: ( ) ( ) ( ),tytyty ph +=

( )( ) ( )( ) ( ) ( ) 0t yaty a...t yaty 01
1n

1n
n =++++ −

− &

Sum of homogeneous solution             (natural response) solving( )tyh

And particular solution            . ( )ty p

How to get natural response           ?  Characteristic polynomial( )tyh

( )
( ) ( ) ( )
( ) ( )  tλ

n
 tλ

1r
 tλ1r

r21h

n1r
 r

1

01
1n

1n
n

n1r1 ec...ec e tc... tccty

0λλ...λλλλ

0aλaλaλλχ

++++++=

=−⋅⋅−⋅−

=+++=

+
+

−

+

−
−

Determination of               relatively simple, if input      yields only a finite number of independent 

derivatives. E.g.: 

( )ty p ( )tu

( ) .t, βetu r
r

ξt≅

;nm ≤ coefficients
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2.1Linear Ordinary Differential Equation (LODE)
Most important for control system/feedback design:

In general: given any linear time invariant system described by LODE can be 
realized/simulated/easily visualized in a block diagram

( ) ( )( ) ( ) ( )( ) ( ) ( )t ubtu b...t ub y(t)aty a...t yaty 01
m

m01
1n

1n
(n) +++=++++ −

− &&

( )2, m2n ==

Control-canonical form

+

--

( )tu

1a

0a

2x
0b ( )ty

2b

1b

1x
+

+ +

∫∫

Very useful to visualize interaction between variables!
What are     and       ????1x 2x
More explanation later, for now: please simply accept it!
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2.2 State Space Equation
Any system which can be presented by LODE can be represented in State space 
form (matrix differential equation).

Let’s go back to our first example (Newton’s law):

One LODE of order n transformed into n LODEs of order 1

What do we have to do ???

( ) ( ) ( ) ( )tutk ytyγ ty =++ &&&

1. STEP:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )tutγ xtk x                

tutyγ tk ytytx

txtytx

21

 

2

2

  

1

+−−=
+−−==

==

&&&&

&&

Deduce set off first  order differential equation in variables

(so-called states of system)

Position :

Velocity :         :

( )tx j

( ) ≅tx1

( ) ≅tx2

( )ty

( ) ty&
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2.2 State Space Equation
2. STEP:
Put everything together in a matrix differential equation:

( ) ( ) ( )  tD utC xty +=

Measurement equation

( )
( )

( )
( ) ( )t u

1
0

tx
tx

 
-k   - γ

1       0
tx
tx

2

1

2

1
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
&

&

State equation

( ) ( ) ( )   tB utA xtx +=&

( ) [ ] ( )
( )  
tx
tx

 0  1ty
2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

Definition:

The system state      of a system at any time     is the “amount of information” that, 
together with all inputs for         , uniquely determines the behaviour of the system 
for all         .

0t

0tt ≥
0tt ≥

x
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2.2 State Space Equation
The linear time-invariant (LTI) analog system is described via

Standard form of the State Space Equation

Variable Dimension Name

state vector

system matrix

input matrix

input vector                  

output vector

output matrix

matrix representing direct coupling 
between input and output

( )tX

A
B
( )tu

( )ty
C

D

Declaration of variables

( ) ( ) ( )tB utA xtx +=& State equation

( ) ( ) ( ) tD utC xty += State equation

( )
( )

( )
 .

tx
  

tx
tx

n

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅⋅⋅=Where        is the time derivative of the vector ( )tx&

System completely described by state space matrixes             ( in the most cases          ). A, B, C, D 0D =

1n×
nn×
rn×
1r×
1p×
np×

rp×

And starting conditions ( )0tx
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2.2 State Space Equation
Why all this work with state space equation? Why bother with?

( ) ( ) ( )
( ) ( ) ( )  tD utC xty

  tB utA xtx
+=
+=&

with e.g. Control-Canonical Form (case                      ):

[ ] 3210

210

b , D b bb , C
1
0
0

 , B
a  a  a

 1       0       0   
0       1       0   

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

or Observer-Canonical Form:

[ ] 3

2

1

0

2

1

0

b ,D1  0  0 ,C
b
b
b

 ,B
a  1  0
a  0  1
a  0  0

A ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)
Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.

( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )t ubtu b...t ubt yaty a...t yaty 01
m

m01
1n

1n
n +++=++++ −

− &&

BECAUSE: Given any system of the LODE form

Can be represented as 

3 ,m3n ==
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2.2 State Space Equation
Block diagrams:

Control-canonical Form:

+
--( )tu

1a 0a

2x
0b ( )ty

2b 1b
1x +

+

+

∫ ∫

Observer-Canonical Form:

+

-

( )tu

1a0a

1x

2b

y(t)

0b
1b

2x +++ +

-

+∫ ∫

18
CAS-DSP, Sigtuna 2007 – Control Theory – S. Simrock

2.2 State Space Equation
Now: Solution of State Space Equation in the time domain. Out of the hat…et voila:

( ) ( ) ( ) ( ) ( ) dττt B uτΦ0 xtΦtx
t

0
−+= ∫

 

 

Natural Response  +  Particular Solution

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )tD u dττt B uτΦC0 xtC Φ      

tD utC xty
 t

0 
+−+=

+=

∫
With the state transition matrix

( ) A t3
3

2
2

e...t!3
At!2

AAtItΦ =++++=

( ) ( )

( )
( ) ( ) ( )
( ) ( )tΦt.Φ4

tΦtΦtt.Φ3
I0.Φ2

tA Φ
dt

tdΦ.1

1
2121

−=

⋅=+
=

=

−

Exponential series in the matrix A (time evolution operator) properties of           (state transition matrix).( )tΦ

Example:
( ) A t2 e

1  0
   t1

AtIt, Φ
0  0
0  0

A
0  0
1  0

A =⎥
⎦

⎤
⎢
⎣

⎡
=+=⎥

⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
=

Matrix A is a nilpotent matrix.
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2.3 Examples

It is given the following differential equation:

( ) ( ) ( ) ( )t u2t y3ty
dt
d4ty

dt
d

2

2

=++

Example:

-State equations of differential equation:

Let                                                 . It is:( ) ( ) ( ) ( )tyt  and  xtytx
 

21 &==

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )t u2t x4t x3tx

t u2t x3t x4tx
txtytx

212

122

21

+−−=
=++

==

&

&

&&

-Write the state equations in matrix form:

Define system state                           Then it follows: ( ) ( )
( )  . 
tx
tx

tx
2

1
⎥
⎦

⎤
⎢
⎣

⎡
=

( ) ( ) ( )

( ) [ ] ( )t x0  1ty

t u
2
0

t x
   4  3-

1      0 
tx

=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=&
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2.3 Cavity Model

Equivalent circuit:

⎟
⎠
⎞

⎜
⎝
⎛ +⋅=⋅+⋅+

==

+′=⋅+⋅+⋅

bg2/1L
2
02/1

L

0

L
2/1

bg
L

II
m
2ωR2UωUω2U

Q2
ω

CR2
1:     ω

    IIU
L
1U

R
1UC

&&&&&

&&&&&

~

.

.

. .

.

~

circulator

Coupler 1:m

Generator 

Resonator  

Last
Beam-CurrentgI

gI

oZ

oZ

oZ

bI

bI
C

oR
L

~
Generator

'
gI extR

Resonator

~ bI

'
gI

rI bI

C
oR

L

Conductor Conductor
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2.3 Cavity Model
Only envelope of rf (real and imaginary part) is of interest:

Neglect small terms in derivatives for U and I

Envelope equations for real and imaginary component.

( ) ( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )( ) dttiItIω  dt tIitI

(t))iU(t)(UωtUiUω2

tiUtUωtUiU

2

1

2

1

t

t
irHF

t

t
ir

ir
2
HFrr2/1

ir
2
HFir

∫∫ +<<+

+<<+

+<<+

&&

&&

&&&&

( )

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +⋅⎟

⎠
⎞

⎜
⎝
⎛=⋅−⋅+

⎟
⎠
⎞

⎜
⎝
⎛ +⋅⎟

⎠
⎞

⎜
⎝
⎛=⋅+⋅+

i0bgiHFri2/1i

r0bgrHFir2/1r

IIm
1

Q
rωUΔωUωtU

IIm
1

Q
rωUΔωUωtU

&

&

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ti ωexpti ItI2ti ωexpti ItItI

ti ωexpti ItItI
t)(i ωexpti UtUtU

HFi0br0bHF ib rbb

HFgigrg

HFir

⋅+=⋅+=

⋅+=
⋅+=

ωω
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2.3 Cavity Model

Matrix equations:

( )
( )

( )
( )

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
−
−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

tItI
m
1

tItI
m
1

1  0
0  1

Q
rω

tU
tU

ω  Δ Δω  
Δω   ω

tU

tU

i0bgi

r0bgr

HF
i

r

2/1

2/1

i

r

&

&

With system Matrices:

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎥

⎦

⎤
⎢
⎣

⎡
−
−−

=
1  0
0  1

Q
rω      B           

ω  
Δω  ω

A HF
2/1

2/1

    ωΔ

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+
=⎥

⎦

⎤
⎢
⎣

⎡
=

tItI
m
1

tItI
m
1

tu                      
tU
tU

tx

i0bgi

r0bgr

i

r rr

General Form:

( ) ( ) ( )tuBtxAtx rr&r ⋅+⋅=
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2.3 Cavity Model

Solution:
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )⎥⎦

⎤
⎢
⎣

⎡ −
=

′′⋅⋅−+⋅=

−

∫

Δωtcos      Δωtsin
Δωtsin   Δωtcos

eΦ(t)

t dtuBt'tΦ0xtΦtx

 tω

t

0

2/1

rrr

Special Case:

( )
( ) ( )

( ) ( )

( )
( )

( ) ( )
( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
⋅

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −
−⋅⎥

⎦

⎤
⎢
⎣

⎡ −
⋅

+

⎟
⎠
⎞

⎜
⎝
⎛

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+
=

−

i

r tω

2/1

2/1
22

2/1

HF

i

r

i

r

i0bgi

r0bgr

I
I

e
Δωtcos       Δωtsin
Δωtsin   Δωtcos

1
Δω       ω

Δω   ω
Δωω
Q
rω

tU
tU

I
I

:
tItIm

1

tItIm
1

tu

2/1

r
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2.3 Cavity Model

Gain 2

Harmonic oscillator

s
1

Integrator
+

s
1

4

3

Gain 1

Scope 

Integrator 1Step Gain

2

- -

Step State space

Scope BuAxx +=′
DuCxy +=

Harmonic oscillator

Scope 

Step 

BuAxx +=′
DuCxy +=

State space

Step 

Load Datacavity
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2.3 Cavity Model

s
1

Integrator
+

s
1

12w

dw

Gain 2

Gain 4

Scope 

Integrator 1

Step Gain

k
- -

dw

Gain 5

+

- +Step 1 

12w

Gain 3

Load Data
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2.4 Masons Rule
Mason’s Rule is a simple formula for reducing block diagrams. Works on continuous and 
discrete. In its most general form it is messy, but  For special case when all path touch

( )
( )∑

∑=
gainsloop path -1

th gainsforward pa
H(s)

Two path are said to touch if they have a component  in common, e.g. an adder.

Forward path:  F1: 1 - 10 - 11 - 5 – 6
F2: 1 - 2 - 3 - 4 - 5 – 6

Check: all path touch (contain adder between 4 and 5)

( ) ( )
( ) ( )

( )
342

2153

342

32135

21

21

HHH1
HHHH

HHH1
HHHHH

lGlG1
fGfGH

−−
+

=
−−

+
=

−−
+

=

1U
1H

4H

10 11

2 3 4 5 6

789

5H

3H2H Y

( )
( )
( )
( ) 32

421

3212

351

HIG
HHIG

HHHfG
HHfG

=
=
=
=

 
  

 

=> By Mason’s rule:

Loop path :      I1: 3 - 4 - 5 - 8 – 9
I2 :  5 - 6 - 7
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2.5 Transfer Function G (s)
Continuous-time state space model

( ) ( ) ( )
( ) ( ) ( )tD utC xty

tB utA xtx
+=
+=& State equation

Measurement equation

Transfer function describes input-output relation of system.

( ) ( ) ( ) ( )sB UsA X0xss X +=−

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )s B Usφ0 xsφ         

sB UAsI0xAsIsX 11

+=
−+−= −−

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )sD Us B UsC φ0 xsC φ      

sD]UBAsI[c0]xAsIC[      

sD UsC XsY
11

++=
+−+−=

+=
−−

( ) ( ) ( ) D BsC φDBAsICsG 1 +=+−= −

System( )sU ( )sY

Transfer function             ( pxr ) (case: x(0)=0):( )sG
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2.5 Transfer Function
Transfer function  of TESLA cavity including 8/9-pi mode

( )

( )

( )

( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−+

⎟
⎠
⎞⎜

⎝
⎛ ++

−=−
π

9
82/1

9
8

9
8π

9
82/1

2

π
9
82/1

2

π
9
8

π
9
82/1

π
9
8 ω        s  

    ωs

ωsΔω

ω
(s)e  Hmodπ

9
8

π

π

ωΔ

ωΔ

( ) ( ) ( ) ( )sHsHsHs H
π

9
8πcavcont +=≈

( ) ( )
( )( )

( )
( ) ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−+

++
=−

π2/1π

ππ2/1
2

π2/1
2
π

2/1
π ω         sΔω 

Δω     ωs

ωsΔω
πωse     Hmodπ
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2.5 Transfer Function of a Closed Loop System

( )sR ( )sE ( )sU ( )sY( )sHc
( )sG

( )sM

-

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )s Ys MsLs RsL        

s YsMsRs HsG        
s Es HsGs UsG sY

c

c

−=
−=

==
 

We can deduce for the output of the system.

( ) sLWith         the transfer function of the open loop system (controller plus plant).

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

( ) ( )s RsT                
s RsLs MsLIsY          

s RsLs Ys MsLI          
1

=
+=

=+
−

( ) sT is called : Reference Transfer Function
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2.5 Sensitivity

System characteristics change with system parameter variations

The ratio of change in Transferfunction T(s) by the parameter b can be defined as:

The sensitivity function is defined as:

T(s)
b

b
T(s)

T(s)
b

Δb
ΔT(s)limS

0Δb

T
b ∂

∂
==

→

Or in General sensitivity function of a characteristics W with respect to the parameter b:

W
b

b
WSW

b ∂
∂

=

Example: plant with propotional feedback given by ( ) pc KsG = ( )
1.0s

KsGp +
=

Plant transfer function T(s): ( ) ( )
( ) kpp

pp

HsGK1
sGK

sT
+

( ) ( )
( ) ϖϖ
ϖ

ϖ
jK25.01.0

K25.0
HjGK1

HjGK
jS

p

p

kpp

kppT
H ++

−
=

+

−
=

Kp=10

Kp=1

|Sht|

omega

Increase of H results in decrease of T
-> system cant be insensitive to both H,T

Δb
b

T(s)
ΔT(s)S =
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2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its 
impact on the system.

( )

D(s)(s)TR(s)T(s)

D(s)
H(s)(s)G(s)G1

(s)GR(s)
H(s)(s)G(s)G1

(s)G(s)G
sC

d

pc

d

pc

pc

⋅+⋅=

⋅⋅+
+

⋅⋅+
⋅

=

To Reject disturbances, make                     small!  ( ) ( )sDsdT ⋅⋅

)(sGc

)(sGd

Plant

R(s)

D(s)

)(sGp

H(s)

C(s)

• Reduce the Gain                   between dist. Input and output
• Increase the loop gain                         without increasing the gain              . Usually 

accomplished by the compensator choice  
• Reduce the disturbance magnitude            Should always be attempted if reasonable
• Use feed forward compensation, if disturbance can be measured.

( )jwGd
( )jwGcGp

( )jwGc
( )jwGd

( )td

- Using frequency response approach to    
investigate disturbance rejection
-In general                  cant be small for all -
Design                     small for significant 
portion of system bandwidth

( )jwTd
w( )jwTd
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2.6 Stability
Now we have learnt so far:
The impulse response tells us everything about the system response to any arbitrary 
input signal  u(t) .

what we have not learnt:
If we know the transfer function G(s), how can we deduce the systems behavior? 
What can we say e.g. about the system stability?

Input never exceeds        and output never exceeds          then we have BIBO 
stability!

Note: it has to be valid for ALL bounded input signals!

 ,M 2 M1

A linear time invariant system is called to be BIBO stable (Bounded-input-bounded-output)
For all bounded inputs                      (for all t) exists a boundary for the output signal 
So that                     (for all t) with        and         positive real numbers.

( )   Mtu 1≤
( )  .Mty 2≤

 ,M 2
 M1  ,M 2

Definition:
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2.6 Stability

BIBO-stability has to be shown/proved for any input. Is is not sufficient to 
show its validity for a single input signal!

Example: integrator    ( ) ( ) ( ),  s UsGs Y = ( )  
s
1s G =

1.Case

The bounded input signal causes a bounded output signal.

2.Case

( ) ( ) ( )

( ) ( )[ ] 1s
1L sYL ty

1s,  Utδt u

11 =⎥⎦
⎤

⎢⎣
⎡==

==

−−

( ) ( )

( ) ( )[ ] t
s
1L sYL ty

s
1s,  U1tu

2
11 =⎥⎦

⎤
⎢⎣
⎡==

==

−−
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2.6 Stability

Condition for BIBO stability:

( ) ( ) ( )s UsGs Y =

We start   from the input-output relation

By means of the convolution theorem we get

( ) ( ) ( ) ( ) ( ) ( )∫ ∫∫
∞

≤≤−≤−=
t

0 0 21

t

0
M dτ τ gM d τ τtuτg  dττt uτg t y  

( )∫
∞

∞<
0

dt t g

Therefore it follows immediately:

If the impulse response is absolutely integrable

Then the system is BIBO-stable.
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2.7  Poles and Zeroes

Can stability be determined if we know the TF of a system?

( ) ( ) [ ]
( ) DBsχ
AsI

CD BsC ΦsG  adj +
−

=+=

( ) ( )
( )

( )
( )sD
sN

ps
zsαsg

ij

ij

l
n

1l

k
m

1k
ij =

−∏
−∏

⋅=
=

=

Coefficients of Transfer function  G(s) are rational functions in the complex variables

What do we know about the zeros and the ploes?

Since numerator           and  denominator            are  polynomials   with real coefficients, 
Ploes and zeroes must be real numbers or must arise as complex conjugated pairs!

( )sN ( )sD

kZ lP α nm ≤Zeroes.      Ploes,      real constant, and it is            (we assume common factors have
already been canceled!)
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2.7 Poles and Zeroes

( )B AsICadj −

Stability directly from state-space

Assuming D=0 (D could change zeros but not poles)

Assuming there are no common factors between the poly           and 
i.e. no pole-zero cancellations (usually true, system called “ minimal” ) then we can identify

( ) ( ) DBAsICscall : HRe 1 +−= −

( ) ( )
( )

( )
( )sa
sb

AsIdet
BAsICadjsH =

−
−

=

( )AsIdet −

( ) BAsICadjb(s) −=

( ) ( )AsI detsa −=

and

i.e. poles are root of ( )AsI det −

iλ thiLet        be the        eigenvalue of A

=>≤  forall i0}{λRe iif System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.
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2.8 Stability Criteria

Several methods are available for stability analysis:

1.Routh Hurwitz criterion

2.Calculation of exact locations of roots
a. Root locus technique
b. nyquist criterion
c. Bode plot

3.Simulation (only general procedures for nonlinear systems)

A system is BIBO stable if, for every bounded input, the output remains bounded with 
Increasing time.

For a LTI system, this definition requires that all poles of the closed-loop transfer-function
(all roots of the system characteristic equation) lie in the left half of the complex plane.

While the first criterion proofs whether a feedback system is stable or unstable, 
the second Method also provides information about the setting time (damping term).
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2.8 Poles and Zeroes

Medium oscillation 
Medium decay

X XX

X

X

No Oscillation 
Fast Decay

X

X

X

X
No oscillation
No growth

Fast oscillation 
No growth 

Medium oscillation
Medium growth

ω(s)Im =

σ(s)Re =

No oscillation
Fast growth

Pole locations tell us about impulse response i.e. also stability:
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2.8 Poles and Zeroes

Furthermore: Keep in mind the following picture and facts!

Complex pole pair: Oscillation with growth or decay.

Real pole: exponential growth or decay.

Poles are the Eigenvalues of the matrix A.

Position of zeros goes into the size of ....c j

In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials
with real coefficients.
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2.8 Bode Diagram

Phase Margin
mφ

00

0180−

Gain Margin

dB

mG

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP 
Is larger than-180 degrees.

ω

ω
1ω

2ω

2ω 1ω
090−
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2.8 Root Locus Analysis
Definition: A root locus of a system is a plot of the roots of the system characteristic
Equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varied.

( ) ( ) ( ) ( )321 ps ps ps
KsK H

−−−
=

XXX
1p2p3p

( ) ( )
( ) ( ) .0sK H1roots at 
sK H1

sK HsG CL =+
+

=

How do we move the poles by varying the constant gain K?

( )sR ( )sY

-

+
( )sHK
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3.Feedback
The idea:
Suppose we have a system or “plant”

We want to improve some aspect of plant’s performance by observing the output 
and applying a appropriate “correction” signal. This is feedback

plant

“open loop”

“closed loop”
plant

?

Ufeedback

r

Question: What should this be?
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3.Feedback
Open loop gain:

Closed-loop gain:

G(s)U Y

( ) ( )
1

O.L

y
usGsG

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

G(s) H(s)1
G(s)(s)GC.L

+
=

( )

( )G H1
G

u
y          G Hy      G u               

G uG Hy               G uG u               

uuGoof: yPr

yfb

fb

+
=⇒−=

=+⇒−=

−=

“closed loop”

U G(s) Y

)(sH

fbU
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3.1 Feedback-Example 1
Consider S.H.O with feedback proportional to x i.e.:

Then

( ) u xαωxγ x 2
n =+++==> &&&

Same as before, except that new “natural” frequency  αω2
n +

Where

+ S
1

s
1 y

2
nω

α

U
-

-
-

x&& x& x

γ

( ) ( )tα x t u

uuxωxγ x

fb

fb
2
n

−=

+=++ &&&

α xuxωxγ x 2 
 n −=++ &&&
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3.1 Feedback-Example 1

So the effect of the proportional feedback in this case is to increase the bandwidth 
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front…) 

)log(ω2
n

1
ω

α+ω2
n

1
n ωlog αω log 2

n +

DC response: s=0

dB

( ) ( )αωγ ss
1sG 2

n
2

C.L.

+++
=Now the closed loop T.F. is:

( ) iωGO.L.

( ) iωGC.L.
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3.1 Feedback-Example 2

( ) ( ) dτ τxαtu
t

0
fb ∫−=

( )∫−=++
t

0

2
n  dττxαu xωxγ xi.e   &&&

Differentiating once more yields: uα xx ωxγ x 2
n &&&&&&& =+++

No longer just simple S.H.O., add another state 

In S.H.O. suppose we use integral feedback:

+ S
1

s
α

-
-

-

y

2
nω

U x&& x& x

γ

S
1
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3.1 Feedback-Example 2

( )

( )

( ) αωγsss
s           

αωγss
1

s
α1

ωγss
1

sG

2
n

2

2
n

2

2
n

2
C.L.

+++
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

⎟
⎠
⎞

⎜
⎝
⎛+

++
=

Observe that
1.
2. For large s (and hence for large     )

( )00GC.L. =
ω

( ) ( ) ( )sG
ωγ ss

1sG O.L.
2
n

2
C.L. ≈

++
≈dB

2
nω

1

( )iωGO.L.

( )iωGC.L.

)log(ω

So integral feedback has killed DC gain
i.e system rejects constant disturbances
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3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

( ) ( )txα tufb &−=

( ) uxωx αγx 2
n =+++ &&&

Now have

So effect off differential feedback is to increase damping

+

αS

-
-

-

xα &

S
1

2
nω

x&& x& x

γ

S
1

x
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3.1 Feedback-Example 3

dB

2
nω

1

( )iωGO.L.

)log(ω

( )iωGC.L.

Now ( ) ( ) 2
n

2
C.L.

ω sαγs
1sG

+++
=

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.
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3.1 PID controller
(1) The latter 3 examples of feedback can all be combined to form a 

P.I.D. controller (prop.-integral-diff).

 ldpfb uuuu ++=

(2) In example above S.H.O. was a very simple system and it was clear what 
physical interpretation of P. or I. or D. did. But for large complex systems not 
obvious

==>         Require arbitrary “ tweaking”

That’s what we’re trying to avoid

S.H.O+

/sKsKK lDp ++

P.I.D controller

-

yx =u



51
CAS-DSP, Sigtuna 2007 – Control Theory – S. Simrock

For example, if you are so smart let’s see you do this with your P.I.D. controller:

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.

G

ω

6th order system
3 resonant poles
3 complex pairs
6 poles

3.1 PID controller
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3.2 Full State Control
Suppose we have system

( ) ( ) ( )
( ) ( )tC xty

tB utA xtx
=

+=&

Since the state vector x(t) contains all current information about the system the
most general feedback makes use of all the state info.

-k x   
xk.....xku nn11

=
−−−=

Where  (row matrix)  [ ] ......kk  k n1=

Where  example: In S.H.O. examples

Proportional fbk : 

Differential fbk : 

[ ]

[ ]DDD

ppp

  k0 xku

0 k xk u

−=−=

−=−=

&
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3.2 Full State Control
Theorem:

If there are no poles cancellations in

( ) ( )
( ) ( ) BAsIC
sa
sbsG 1

O.L.
−−==

[ ]

( )
0

1n
1n

n
0

1n
1n1O.L.

n

1

1n- 0

n

1

1n-0n

1

a...sas
b...sbBAsIC G

x
...
...
x

 b...  ...  by

 u

1
...
0
0

  

x
...
...
x

  

.   -a  ...   ..-a
1...         ...   0 

....     ..    ...   0 
0      ...   1    0 

x
...
...
x

+++
++

=−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−−

O.L.A

Then can move eigen values of                 anywhere we want using full state feedback.BKA−
Proof:
Given any system as L.O.D.E. or state space it can be written as:

B

Where
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3.2 Full State Control
i.e. first row of O.L.A Gives the coefficients of the denominator

( ) ( )

[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−=

+++=−=

−

−
−

)k -(a   ...    )   ...   k-(a
1    .         ..      ..         .0      

    ....         ..      ..         .0      
0                     ...1         0      

 k ...  ... k 

1
...
0
0

..  -a  ...    .-a
1..        ...   .0  

..     ...   ...   .0  
0    ...    1    0  

BKAA
Now

a...sasAsIdetsa

1n1n-00

1n-0

1n-0

O.L.C.L.

0
1n

1n
nO.L.O.L.

So closed loop denominator

( ) ( )
( ) ( )1n1n

1n
00

n

C.L.C.L.

ka...skas             
AsIdetsa

−−
− +++++=

−=

Using                  have direct control over every closed-loop denominator coefficient 
==>  can place root anywhere we want in s-plane.

Kxu −=
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3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

+
- -

-

+ 2k

1k

u
S
1

2
nω

x&& x& x

γ

x

y

x&

Of course this assumes we have access to the       state, which we actually
Don’t in practice. 

x&

However, let’s ignore that “ minor” practical detail for now.
( Kalman filter will show us how to get       from       ).x& x
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3.2 Full State Control
With full state feedback have (assume D=0)

B+ +
s
1 C

A

K

kxUfb −=

-

( )

Cxy    

Kxu
B u xBKA    x

BKuBu Ax      

]uB[uA x  x

fb

fb

fb

=

−=
+−=

++=

++=

&

&

With full state feedback, get new closed loop matrix

( )BKAA O.L.C.L. −=

Now all stability info is now given by the eigen values of new A matrix

So

U x& x y
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3.3  Controllability and Observability

The linear time-invariant system

Cxy
BuAxx

=
+=&

Is said to be controllable if it is possible to find some input u(t) that will transfer the 
initial state x(0) to the origin of state-space,

( ) ( ) ( ) ( ) ( )∫ −+=
t

0

 d ττtB uτφ0xtφtx

( ) finite,with  t0tx 00 =

The solution of the state equation is:

For the system to be controllable, a function u(t) must exist that satisfies the equation:

( ) ( ) ( ) ( )∫ −+=
0t

0
00  dττtBuτφ0xtφ0

With      finite. It can be shown that this condition is satisfied if the controllability matrix0t
B]B ... A[B  AB  AC 1n-2

M =

Has inverse. This is equivalent to the matrix         having full rank (rank n for an n- th
order differential equation).

MC
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3.3  Controllability and Observability
Observable:

The linear time-invariant system is said to be observable if the initial conditions x(0) 
Can be determined from the output function y(t), . With is finite where ttt0 11≤≤

( ) ( ) ( ) ( )∫ −+==
t

0

 d ττtBuτφC0xtC φCxty

The system is observable if this equation can be solved for x(0). It can be shown that 
the system is observable if the matrix:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1n-

M

CA
  ...
 CA
  C

o

Has inverse. This is equivalent to the matrix        having full rank (rank n for an n-th 
Order differential equation). 

MC


