1.Control Theory

Objective:
The course on control theory is concerned with the analysis and design of closed loop
control systems.

Analysis:
Closed loop system is given — determine characteristics or behavior.

Design:
Desired system characteristics or behavior are specified—— configure or synthesize closed
loop system.
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1.Introduction

Definition:
A closed-loop system is a system in which certain forces (we call these inputs) are
determined, at least in part, by certain responses of the system (we call these outputs).

System
outputs

Closed loop system




1.Introduction

Definitions:

¢+ The system for measurement of a variable (or signal) is called a sensor.
A plant of a control system is the part of the system to be controlled.

¢+ The compensator (or controller or simply filter) provides satisfactory
characteristics for the total system.

System Manipulated

input variable
i (+) S Compensator

Sensor

Closed loop control system

Two types of control systems:

¢ A regulator maintains a physical variable at some constant value in the
presence of perturbances.

A servomechanism describes a control system in which a physical variable is

required to follow, or track some desired time function (originally applied in order

to control a mechanical position or motion).




1.Introduction

Example 1: RF control system

Goal:
Maintain stable gradient and phase.

Solution:
Feedback for gradient amplitude and phase.

Phase amplitude
controller controller Klystron

=) M—D

Controller

—<

Gradient
set point
0)

X

Phase detector _
continued.4
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1.Control Systems

Model:
Mathematical description of input-output relation of components combined with block

diagram.

Amplitude loop (general form):

Klystron
controller y

Reference error
Input r—l-\ amplifier

A

RF power
amplifier

Monitoring
transducer

Gradient detector

" | low level radio frequency




1.Introduction

RF control model using “transfer functions”

controller Klystron

Reference Input \ Control input U(s) \

R(s) :q_\ErrorE(s) : Hc(s) X6

M(s)

Gradient detector

A transfer function of a linear system is defined as the ratio of the Laplace
transform of the output and the Laplace transform of the input with I. C .’s =zero.

Input-Output Relations

Input Output Transfer Function

U(s) Y(s) G(s) = P(s)K(s)
E(s) Y(s) L(s)=G(s)H(s)
R(s) Y(s) T(s) =(1+ L(s)M(s)) ' L(s)




Example2: Electrical circuit

A

Vi(¥)

Differential equations:

Laplace Transform:

Transfer function:

1.Introduction

—"\\W\,
i(t) R,

) R,
T

t

R, i(t)+R, i(t) +é j i(z) dr=v,(1)

¢ 0

R. i)+ [i(s)de =v.(0

0

R I(s)+ R, I(s)+——I(s) = V'(s)
s-C

R, I(5)+——1(s) = V(5)
s-C

Vis) R,-C-s+1
Viis) (R,+R,)C-s+1

G(s)

Input V, ,output V,

2




1.Introduction

Example 3: Circuit with operational amplifier

Vos)  R,-C-s+1

Vis) N R,-C-s

It is convenient to derive a transfer function for a circuit with a single operational
amplifier that contains input and feedback impedance:

G(s)=

Viis) \ L [Vo(s)

-—— _L ®—- — —

Z,(s) \

o
Vis)=Z() Its) and V(s)=—Z,(5) I) ——> G(s)= Z;j —_ Z{(f))




Model of Dynamic System

We will study the following dynamic system:

Parameters:

J : spring constant

14 I: Y :damping constant
u(t) : force

Quantity of interest:
l Y y(?) : displacement from equilibrium
u(t)

Differential equation: Newton’s third law (m = ])

)=>F,, =—ky(t)-yy()+ult)
y(l‘)+yy'(f)+ky(t)=u(f)

»(0)=y,.90)= 7,

-Equation is linear (i.e. no )'/2 like terms).




Model of Dynamic System

Stop calculating, let’s paint!!!
Picture to visualize differential equation

1.Express highest order term (put it to one side)

e) ==k y(t) =y (e)+ult)

2.Putt adder in front

3.Synthesize all other terms using integrators!

Block diagram
i ¥(t)




2.1 Linear Ordinary Differential Equation (LODE)

General form of LODE:
y(”)(t)+ a, y(”_l)(t)+...+a] )'/(t)+ a, y(t):bm u(m)( )+...+b1 L't(t)+ b, u(t)

m,n_ Positive integers, m < n; coefficients a,,a,,...,a, ;,, b,,...,b, real numbers.

Mathematical solution: hopefully you know it

Solution of LODE: Mt)=,(t)+,(t)

Sum of homogeneous solution y, (t) (natural response) solving
v+ a, v )+t a, 50+ a, y()=0
And particular solution yp( )

How to get natural response yh(t) ? Characteristic polynomial

x(A)=2"+a, 2" +a,iva, =0

AGE (c] +e,t+..+c, tH)e’I’t +c e +.. +cen

Determination of () relatively simple, if input u(t) yields only a finite number of independent

derivatives. E.g.: u(t)= e, f ¢




2.1Linear Ordinary Differential Equation (LODE)

Most important for control system/feedback design:
y(”)(t)Jr a, y(”_l)(t)+...+ a, )>(t)+ a, yt)=>b, u(’")(t)Jr ..+b, L't(t)+ b, u(t)

In general: given any linear time invariant system described by LODE can be
realized/simulated/easily visualized in a block diagram (n =2, m= 2)

Control-canonical form

b2

b,

aO:

Very useful to visualize interaction between variables!
What are x; and Xx,??7??

More explanation later, for now: please simply accept it!




2.2 State Space Equation

Any system which can be presented by LODE can be represented in State space
form (matrix differential equation).

What do we have to do ???
Let’s go back to our first example (Newton’s law):

$()+y () + k) =ult)
Deduce set off first order differential equation in variables

X; (t) (so-called states of system)

X](f)E Position : y(t)

X, (l‘) ~ Velocity : J(t):

X2 (t)

I Wt) =y #(t)+u(t)
= —kx](t)—y xz(t)+”(t)
One LODE of order n transformed into n LODES of order 1

- | [ [ low level radio frequency




2.2 State Space Equation

2. STEP:
Put everything together in a matrix differential equation:

x(t)=Ax(t)+ Bul(r)

State equation

xl(t)

V)=l 0] {w)}

y(t) = Cx(t)+ D u(t)
Measurement equation
Definition:

The system state x of a system at any time ¢, is the “amount of information” that,
together with all inputs for ¢ > ¢, , uniquely determines the behaviour of the system

forall 1>z, .




2.2 State Space Equation

The linear time-invariant (LTI) analog system is described via
Standard form of the State Space Equation

x(1)=4x(t)+Bu(r)  State equation

y(t)=Cx(t)+Du(t)  State equation

x,(t)

_ _ x,(¢)
Declaration of variables
ystem completely described by state space matrixes 4 B ¢ p (in the most cases D=0 )

Variable Dimension Name

Where x(¢ ) is the time derivative of the vector  x(r)=

.And starting conditions x(to)

X() nxl state vector
A nxn

system matrix

B nxr input matrix

rx 1 input vector
pxl1

pXn

output vector

output matrix

pXr matrix representing direct coupling
between input and output

low level radio frequency




2.2 State Space Equation

Why all this work with state space equation? Why bother with?
BECAUSE: Given any system of the LODE form

y(”)(t)+ a, y(”_])(t)+...+al )'/(t)+ a, y(t): b, u(m)( )+...+b1 L't(t)+ b, u(t)

Can be represented as
x(t)=Ax(@)+Bult)

y(t)=Cx(t)+ D ulr)
with e.g. Control-Canonical Form (case n =3 ,m =3 ):
0 1 0 0

A= 0 0 1|,B=|0|,C=|p,b,b,],D=b,

-a, —a, —a, 1

or Observer-Canonical Form:
00 —a, b,
A=|10 —a, |,B=|b,|,C=[0 0 1].D=b,
01 —a, b,
Notation is very compact, But: not unique!!!
Computers love state space equation! (Trust us!)

Modern control (1960-now) uses state space equation.
General (vector) block diagram for easy visualization.




2.2 State Space Equation

Block diagrams: :
g Control-canonical Form:

\4

a
+|

Observer-Canonical Form:




2.2 State Space Equation

Now: Solution of State Space Equation in the time domain. Out of the hat...et voila:

K(0)= () x(0)+ [ @(2) B ule~7) dr

Natural Response + Particular Solution
y(t) = Cx(t)+ D u(t)
= C o(t) x(0)+ C[ @(c) B ult—7) dr+D ult)

With the state transition matrix

4° , A
@(f)=]+At+2—/t +7f +..=¢€
Exponential series in the matrix A (time evolution operator) properties of &(¢) (state transition matrix).

z.d%(t) =4 o(¢)

2.0(0)=1
3,@(t1 +t2):gb( 1)'¢(t2)
4.07'(t)=d(-1

0 1
A= |
0 0

At

Matrix A is a nilpotent matrix.




2.3 Examples

Example:

It is given the following differential equation:

2

OIS ORERORERT)

-State equations of differential equation:
Let x,(¢)= y(t) and x,(t)=y(¢) . Itis:

%, (1)= 1) = x,(¢)
)'cz(t)+4 xz(t)+3 xl( ):2 u(t)
%,()==3 x,(t)—4 x,(£)+ 2 ulz)

-Write the state equations in matrix form:

Define system state x(¢)= [x] (t))} . Then it follows:
X3

(¢




2.3 Cavity model

Ib
<~> Beam-Current

Equivalent circuit:

Generator

I (—P

Resonator

co+LuoiLlu-i +1,
L 4
L
I w,

T2RC 20,

@,y

.. : 2. .
U+2w,, U+w, U=2Rw0,, -(—Ig +1bj
m




2.3 Cavity model

Only envelope of rf (real and imaginary part) is of interest:
U(r)=(U,(t)+i U,(1))-exp (i @,t)
[g (t) = (Igr(t)+ ! ]gi(t))' exp(i a)HFt)
[b(t): (]bm(t)+ilbm(t))'exp(i COHFt): Z(IbOr(t)+iIb()i(t))'exp(i WO yr t)

Neglect small terms in derivatives for U and |

U, +iU,(t) << (U, (¢)+iU(1))

2w,,,{U, +iU, (1)) << o (U0 +iU 1)
2

T+ ) e << e 00,0) 1)

1] 1]

Envelope equations for real and imaginary component.

r

Ur(t)+w1/2 .Ur +Aa)l]z :a)HF(_

1




2.3 Cavity model

Matrix equations:

ol e

With system Matrices:

e {_ W/ —




2.3 Cavity model

Solution:

cos(dwt) — sin
sin Aa)t) cos(Aa)t)

QD(O — e—wl/Z f|:

Special Case:

cos (dwt) —sin (Aa)t)}ew]u,}{

sin (dwt) cos (dwt)




2.3 Cavity Model

Integrator

—

Integrator 1

1

S

x'= Ax+ Bu

" | low level radio frequency

g y=Cx+Du

State space
Step

i)

Load Data

i)

+

4=

Scope

Harmonic oscillator

Harmonic oscillator

x'=Ax+ Bu
y=Cx+Du

—1

State space

Scope




2.3 Cavity Model

Integrator

Load Data

i)

+

Integrator 1

Gain 3
wi2




2.4 Masons Rule

Mason’s Rule is a simple formula for reducing block diagrams. Works on continuous and
discrete. In its most general form it is messy, but For special case when all path touch

Z(f0rward path gains)
1 —Z (loop path gains)

H(s)=

Two path are said to touch if they have a component in common, e.g. an adder.
10 11
> [—[5

U 1 2
H, H, H,

H 7
Forward path: F;:1-10-11-5-6 !
F:1-2-3-4-5-6 Gl

)=H
L h ,:3-4-5-8-9 G(fZ) HHH
oop path : :3-4-5-8-
I21:5-6-7 G<];

Check: all path touch (contain adder between 4 and 5) G(]

H5H3 +HIH2H3 — HS(H5 +H1H2)

=> By Mason’s rule: H = G(f1)+G( 2) = =
Yy P 1-G(l,)-G(l,) 1-H,H,-H, I-H,H,-H,




2.5 Transfer Function G (s)

Continuous-time state space model
x(t) =4 x(t)+ B u(t) State equation
y(t) =C x(t)+ D u(t) Measurement equation

Transfer function describes input-output relation of system.

Y(s)

Y(s)=CXx(s)+D U(s)
=C[ (sl — A)" ]x(0)+ [c(s] — 4) "B+ DJU(s)
=C go(s) x(0)+ C (o(s) B U(S)+ D U(S)

Transfer function G(s) ( pxr) (case: x(0)=0):

G(s)=C(sI—A4)"B+D=C¢(s)B+D



2.5 Transfer Function

Transfer function of TESLA cavity including 8/9-pi mode

%n—mode HSE(S) =—

9
2
’ Awéﬂ +( (a’z/z )ﬁn)

9




2.5 Transfer Function of a Closed Loop System

o H . (S) > G(S ) Y(S) >

We can deduce for the output of the system.

¥(s) =Gls) Uls)=Gls) H,(s) Els)
=G(s) H,(s) [R(s)-M(s) Y(s)
= L(s) Rls)—L(s) M(s) ¥(s)

With L(s) the transfer function of the open loop system (controller plus plant).

(1+L(s) M(s)) Y(s)= Lis) R(s)
Y(s)=(1+Lls) M(s))" Lis) R(s)
= T(s) R(S)

T(s) is called : Reference Transfer Function




2.5 Sensitivity

The ratio of change in Transferfunction T(s) by the parameter b can be defined as:

System characteristics change with system parameter variations

_AT(s) b The sensitivity function is defined as:
T(s) Ab §7 = lim AT b__0T(9) b

a0 Ab T(s) Ob T(s)
Or in General sensitivity function of a characteristics W with respect to the parameter b:
oW b
bW

Sy

Example: plant with propotional feedback given by GC (S =

K, G, (S)
1+K,G,(s)H,

Plant transfer function T(s): 7 (S)

_ -K,G,(@)H, 025K,
1+K,G,(j@)H, 0.1+025K, +j@

Sy(j@)

Increase of H results in decrease of T

-> system cant be insensitive to both H, T




2.5 Disturbance Rejection

Disturbances are system influences we do not control and want to minimize its
Impact on the system.

C(S)= G.(s)- Gp(S) R(s) + G,(s)
I+G.(s)-G,(s) H(s) I+G.(s)-G,(s)H(s)

=1T1(s) -R(s) +T,(s) - D(s)

D(s)

To Reject disturbances, make 7-d(s)- D(s) small!

R(s)

- Using frequency response approach to
investigate disturbance rejection

-In general 7d(jw) cant be small for all - w
Design  7d(jw) small for significant
portion of system bandwidth

Reduce the Gain Gd( jw) between dist. Input and output

Increase the loop gain Gpo( jw)  without increasing the gain Gd( jw). Usually
accomplished by the compensator choice Ge( jw)

Reduce the disturbance magnitude d(t) Should always be attempted if reasonable
Use feedforward compensation, if disturbance can be measured.




2.6 Stability

Now we have learnt so far:

The impulse response tells us everything about the system response to any arbitrary
input signal wu(z) .

what we have not learnt:

If we know the transfer function G(s), how can we deduce the systems behavior?
What can we say e.g. about the system stability?

Definition:

A linear time invariant system is called to be BIBO stable (Bounded-input-bounded-output)
For all bounded inputs \u(t)( < M, (forallt) exists a boundary for the output signal A7,
So that |y(¢) <M, . (forall t) with o7, and M, , positive real numbers.

Input never exceeds M, and output never exceeds M, , then we have BIBO
stability!

Note: it has to be valid for ALL bounded input signals!




2.6 Stability

Example: Y(s):G(S) U(S), integrator  G(s) =

4
S

1.Case

u(t)=06(t), U(s)=1
O =| 6] |= "”H _

S
The bounded input signal causes a bounded output signal.

2.Case

u(t)=1, U (s)=7

b= | BN

BIBO-stability has to be shown/proved for any input. Is is not sufficient to
show its validity for a single input signal!




2.6 Stability

Condition for BIBO stability:

We start from the input-output relation

Y(s) = G(S) U(S)

By means of the convolution theorem we get

‘y(t)‘z I;g(f)u(t—f)df SI;‘g(f)“u(t—r)‘dtSMIIOw‘g(t)‘dTSMZ

Therefore it follows immediately:
If the impulse response is absolutely integrable

| 12()|dt <
Then the system is BIBO-stable.




2.7 Poles and Zeroes

Can stability be determined if we know the TF of a system?

[SI — A]

G(s)=C@d(s)B+D=C X(S)“df B+D

Coefficients of Transfer function G(s) are rational functions in the complex variable s

_ Z:J(S_Zk)_Nij(S)
gij(S)_OC. H;@:](S_pl) _ DU(S)

Z, Zeroes. F) Ploes, a real constant, and itis m <n (we assume common factors have
already been canceled!)

What do we know about the zeros and the ploes?

Since numerator N(s) and denominator D(S) are polynomials with real coefficients,
Ploes and zeroes must be real numbers or must arise as complex conjugated pairs!




2.7 Poles and Zeroes

Stability directly from state-space
Recall : H(s)=C(sI - A) ' B+D

Assuming D=0 (D could change zeros but not poles)
H(s)= Cadj(sI — A)B _ b(s)
det(sI—A4)  als)

Assuming there are no common factors between the poly Cadj(s/ — A)B and det(sI — A)
I.e. no pole-zero cancellations (usually true, system called *“ minimal” ) then we can identify

and b (s)=Cadj(sI—A4) B

a (S) =det (S[ —A)

i.e. poles are root of det (s/—4)

Let A, bethe i” eigenvalue of A
if Re{ <0 forall i => System stable

So with computer, with eigenvalue solver, can determine system stability directly from coupling matrix A.




2.8 Stability Criteria

A system is BIBO stable if, for every bounded input, the output remains bounded with
Increasing time.

For a LTI system, this definition requires that all poles of the closed-loop transfer-function
(all roots of the system characteristic equation) lie in the left half of the complex plane.

Several methods are available for stability analysis:
1.Routh Hurwitz criterion
2.Calculation of exact locations of roots

a. Root locus technique

b. nyquist criterion

c. Bode plot

3.Simulation (only general procedures for nonlinear systems)

While the first criterion proofs whether a feedback system is stable or unstable,
the second Method also provides information about the setting time (damping term).




2.8 Poles and Zeroes

Pole locations tell us about impulse response i.e. also stability:

Medium oscillation

Medium decay

-

P
-2

- —

Im (s) = o

Fast oscillation
No growth

Medium oscillation
Medium growth

No Oscillation
Fast Decay

" | low level radio frequency
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1
1
1
1
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1
|
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I
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\

»

. X
No oscillation '« _

No growth

AV 4

Re(s) =0

e

I >
No oscillation
Fast growth

|
\
|
|
1
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|
|
1
1
|
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2.8 Poles and Zeroes

Furthermore: Keep in mind the following picture and facts!

»Complex pole pair: Oscillation with growth or decay.
»Real pole: exponential growth or decay.
»Poles are the Eigenvalues of the matrix A.

> Position of zeros goes into the size of C;

In general a complex root must have a corresponding conjugate root ( N(s), D(S) polynomials
with real coefficients.

" | low level radio frequency




2.8 Bode Diagram

0

Gain Margin

The closed loop is stable if the phase of the unity crossover frequency of the OPEN LOOP
Is larger than-180 degrees.




2.8 Root Locus Analysis

Definition: A root locus of a system is a plot of the roots of the system characteristic
Equation (the poles of the closed-loop transfer function) while some parameter of the
system (usually the feedback gain) is varjed.

_—

H (s)

K H(s)
Gy (s)= 1K H(s)

How do we move the poles by varying the constant gain K?

roots at]+KH(S) =0.




3.Feedback

The idea:
Suppose we have a system or “plant”

“open loop”

plant

We want to improve some aspect of plant’s performance by observing the output
and applying a appropriate “correction” signal. This is feedback

»

N
<

“closed loop™

~

Ufeedbac:k

Question: What should this be?




3.Feedback

Open loop gain:

G(s)

Closed-loop gain:

U

n
»

P
N

“closed loop™

H(s) |

GC.L(S): G(S)
1+G(s) H(s)
Proof: y = G(u —uﬂ))
=Gu-Gu, = y+GH =Gu
G

=Gu-GH =
. g - (I1+GH)




3.1 Feedback-Example 1

Consider S.H.O with feedback proportional to x i.e.:

)'c'+y5c+a)jx:u+ufb

. . 2
X+)/X+C()nX:M—OC X

==> )'c'+y5c+(a),f+a)x=u

Same as before, except that new “natural” frequency o’ +a




3.1 Feedback-Example 1
i

Now the closed loop T.F.is: G " (S) =

s’ +ps + 0! +a)

DC response: s=0

So the effect of the proportional feedback in this case is to increase the bandwidth
of the system
(and reduce gain slightly, but this can easily be compensated by adding a constant gain in front...)




3.1 Feedback-Example 2

In S.H.O. suppose we use integral feedback:
t

U (r)= —ocj x(z) dr

0

t

ie ¥tyxi+to; xzu—ajx(r) dr

Differentiating once more yields: x +y X + a),f X+ox=u

No longer just simple S.H.O., add another state




3.1 Feedback-Example 2

1

G L (S)_ S2+ys+a)j

_ ”(Z)(Sz + s :(wi +a)J

S
2 2
S(S +ys+a)n)+a

Observe that
1. G*(0=0)
2. For large s (and hence for large w)

1
0 )= )= O )

So integral feedback has killed DC gain
I.e system rejects constant disturbances

47




3.1 Feedback-Example 3

Suppose S.H.O now apply differential feedback i.e.

Uy, (t) =—a x(t)

Now have » . 5
x+(y+a)x+a)nx=u

So effect off differential feedback is to increase damping



3.1 Feedback-Example 3

1
s+(y+a)s+ o]

Now Gt (S) =

So the effect of differential feedback here is to “flatten the resonance” i.e. damping is increased.

Note: Differentiators can never be built exactly, only approximately.




3.1 PID Controller

(1) The latter 3 examples of feedback can all be combined to form a
P.1.D. controller (prop.-integral-diff).

S.H.O

P.1.D controller
K,+K,s+K,/s

U, =1, +1t,+UL,

(2) In example above S.H.O. was a very simple system and it was clear what
physical interpretation of P. or . or D. did. But for large complex systems not
obvious

Require arbitrary “ tweaking”

That’s what we’re trying to avoid

- | [ [ low level radio frequency




3.1 PID Controller

For example, if you are so smart let’s see you do this with your P.1.D. controller:

6t order system
3 resonant poles
3 complex pairs
6 poles

/

T~

Damp this mode, but leave the other two modes undamped, just as they are.

This could turn out to be a tweaking nightmare that’ll get you nowhere fast!

We’ll see how this problem can be solved easily.




3.2 Full State Control

Suppose we have system

x(t)= Ax(t)+ Bu(t)
y(t)=Cx ()

Since the state vector x(t) contains all current information about the system the
most general feedback makes use of all the state info.

Where example: In S.H.O. examples

Proportional fok : u :—kpx:—[kp 0|

Differential fbk :  u, =—k,x=—[0 k]

- | [ [ low level radio frequency




3.2 Full State Control

Theorem:

If there are no poles cancellations in

Gon ()= 28 (st )’

a(s)

Then can move eigen values of 4— BK anywhere we want using full state feedback.

Proof:
Given any system as L.O.D.E. or state space it can be written as:

AO.L.
_AL




3.2 Full State Control

i.e. first row of 4 9% Gives the coefficients of the denominator
a®*(s)= det(s] — AO'L')Z s"+a, "
Now
AC‘L. — AO.L. _BK
0 1 ... 0]

1
_-(ao +k0) _(an—l +kn—1)

So closed loop denominator

at (S)z det (SI — A" )
:s”+(a0+k0)sn_1+...+(a +kn—/)

Using u =—Kx have direct control over every closed-loop denominator coefficient
___==>_can place root anywhere we want in s-plane.

n—1




3.2 Full State Control

Example: Detailed block diagram of S.H.O with full-scale feedback

Of course this assumes We have access to the x state, which we actually
Don’’t in practice.

However, let’s ignore that “ minor” practical detail for now.
( Kalman filter will show us how to get x from x ).




3.2 Full State Control

With full state feedback have (assume D=0)

X

»
L

X [1
S

A

K |e

X =Ax+Bfutu,]
= Ax+ Bu+ BKu,
i =(4-BK)x+Bu
Uy =—Kx
y =Cx

With full state feedback, get new closed loop matrix

ACL — (AO.L. —BK)
Now all stability info is now given by the eigen values of new A matrix




3.3 Controllability and Observability

The linear time-invariant system

x = Ax + Bu

y=Cx

Is said to be controllable if it is possible to find some input u(t) that will transfer the
initial state x(0) to the origin of state-space, x(to) =0,with { finite

The solution of the state equation is:

w(0)= o) (0)+ [ 9(2)Bu (- 7)

0
For the system to be controllable, a function u(t) must exist that satisfies the equation:

t

0= o, )x(0)+ Jga(r)Bu (t, —7)dr
0
With t ,finite. It can be shown that this condition is satisfied if the controllability matrix

C,=/B AB A'B ... A"'B]

Has inverse. This is equivalent to the matrix C,, having full rank (rank n for an n- th
order differential equation).




3.3 Controllability and Observability

Observable:

The linear time-invariant system is said to be observable if the initial conditions x(0)
Can be determined from the output functiony(t), 0<¢ <t f where L is ﬁnite With

p()= Cx = C o ()0 + C | p(c)Bu (- 7)dv

The system is observable if this equation can be solved for x(0). It can be shown that
the system is observable if the matrix:

C
CA

_CA n-l —

Has inverse. This is equivalent to the matrix C ,, having full rank (rank n for an n-th
Order differential equation).




