Introduction to Field Programmable Gate Arrays

Lecture 1/3

CERN Accelerator School on Digital Signal Processing
Sigtuna, Sweden, 31 May – 9 June 2007
Javier Serrano, CERN AB-CO-HT
Outline

- Historical introduction.
- Basics of digital design.
- FPGA structure.
- Traditional (HDL) design flow.
- Demo.
Outline

- Historical introduction.
- Basics of digital design.
- FPGA structure.
- Traditional (HDL) design flow.
- Demo.
Historical Introduction

- In the beginning, digital design was done with the ’74 series of chips.

- Some people would design their own chips based on Gate Arrays, which were nothing else than an array of NAND gates:
The first programmable chips were PLAs (Programmable Logic Arrays): two level structures of AND and OR gates with user programmable connections.

Programmable Array Logic devices were an improvement in structure and cost over PLAs. Today such devices are generically called Programmable Logic Devices (PLDs).
Historical introduction

- A complex PLD (CPLD) is nothing else than a collection of multiple PLDs and an interconnection structure.

- Compared to a CPLD, a Field Programmable Gate Array (FPGA) contains a much larger number of smaller individual blocks + large interconnection structure that dominates the entire chip.
Outline

- Historical introduction.
- Basics of digital design.
- FPGA structure.
- Traditional (HDL) design flow.
- Demo.
Basics of digital design

- Unless you really know what you are doing, stick to synchronous design: sandwiching bunches of combinational logic in between flip flops.

- Combinational logic: state of outputs depend on current state of inputs alone (forgetting about propagation delays for the time being). E.g. AND, OR, mux, decoder, adder...

- D-type Flip flops propagate D to Q upon a rising edge in the clk input.

- Synchronous design simplifies design analysis, which is good given today’s logic densities.
Don’t do this!

Toggle flip-flops get triggered by glitches produced by different path lengths of counter bits.
Basics of (synchronous) Digital Design

High clock rate: 144.9 MHz on a Xilinx Spartan IIE.

Higher clock rate: 151.5 MHz on the same chip.

Illustrating the latency/throughput tradeoff
Historical introduction.
Basics of digital design.
FPGA structure.
Traditional (HDL) design flow.
Demo.
Basic FPGA architecture

Clocking
CLKin
CLK0
CLK90
CLKFX

Logic

Memory
DIA DOA
DIPA DOPA
ADDRA
CLKA
DIB DOB
DIPB DOPB
ADDRB
CLKB

IOC Blocks
Reg DDR mux
3-State
Reg DDR mux
Input
Reg Output
PAD
The logic block: a summary view

Example: using a LUT as a full adder.
A practical example: Xilinx Virtex II Pro family (used in the lab)

Overview

Logic Block (CLB)

Embedded PowerPC

Configurable

Digitally Controlled Impedance (DCI)
A practical example: Xilinx Virtex II Pro family

Slice

Detail of half-slice
A practical example: Xilinx Virtex II Pro family

<table>
<thead>
<tr>
<th>Routing Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Horizontal Long Lines 24 Vertical Long Lines</td>
</tr>
<tr>
<td>120 Horizontal Hex Lines 120 Vertical Hex Lines</td>
</tr>
<tr>
<td>40 Horizontal Double Lines 40 Vertical Double Lines</td>
</tr>
<tr>
<td>16 Direct Connections (total in all four directions)</td>
</tr>
<tr>
<td>8 Fast Connects</td>
</tr>
</tbody>
</table>
FPGA state of the art

In addition to logic gates and routing, in a modern FPGA you can find:
- Embedded processors (soft or hard).
- Multi-Gb/s transceivers with equalization and hard IP for serial standards as PCI Express and Gbit Ethernet.
- Lots of embedded MAC units, with enough bits to implement single precision floating point arithmetic efficiently.
- Lots of dual-port RAM.
- Sophisticated clock management through DLLs and PLLs.
- System monitoring infrastructure including ADCs.
- On-substrate decoupling capacitors to ease PCB design.
- Digitally Controlled Impedance to eliminate on-board termination resistors.
Embedded processors
Why use embedded processors?

Customization: take only the peripherals you need and replicate them as many times as needed. Create your own custom peripherals.

Performing some software tasks in hardware can be expensive
Performing some hardware tasks in software can be slow

Strike optimum balance in system partitioning.
Serial signaling:

- Avoids clock/data skew by using embedded clock.
- Reduces EMI and power consumption.
- Simplifies PCB routing.
Clock management
Outline

- Historical introduction.
- Basics of digital design.
- FPGA structure.
- Traditional (HDL) design flow.
- Demo.
Traditional design flow 1/3

Implement your design using VHDL or Verilog

- HDL
- Behavioral Simulation
- Synthesis
- Functional Simulation
- Implementation
- Timing Simulation
- Download
- In-Circuit Simulation
- Verification
Traditional design flow 2/3

1. HDL
2. Behavioral Simulation
3. Synthesis
4. Functional Simulation
5. Implementation
6. Timing Simulation
7. Download
8. In-Circuit Verification

Synthesize the design to create an FPGA netlist
Traditional design flow 3/3

- HDL
- Synthesis
- Implementation
- Download

Behavioral Simulation
Functional Simulation
Timing Simulation
In-Circuit Verification

Translate, place and route, and generate a bitstream to download in the FPGA
Both VHDL code segments produce exactly the same hardware.

Boolean Expression: \[F = \overline{A \cdot B + C \cdot D} \]

VHDL Code 1: \[F <= \text{not}((A \text{ and } B) \text{ or } (C \text{ and } D)) \]

VHDL Code 2: \[F <= (A \text{ and } B) \text{ nor } (C \text{ and } D) \]
library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity MUX2 is
 port(SEL, X1, X2 : in std_logic;
 Y : out std_logic);
end entity MUX2;

architecture ARCH1 of MUX2 is

 component AOI
 port(A, B, C, D : in std_logic;
 F : out std_logic);
 end component;

 signal SELB, T : std_logic;

begin

 SELB <= not SEL;

 AOI_inst : AOI
 port map (A => SELB, B => X1, C => SEL, D => X2, F => T);

 Y <= not T;

end ARCH1;
Outline

- Historical introduction.
- Basics of digital design.
- FPGA structure.
- Traditional (HDL) design flow.
- Demo.
Now, let’s see how you go from design idea to hardware, using the traditional flow.

Many thanks to Jeff Weintraub (Xilinx University Program), Bob Stewart (University of Strathclyde) and Silica for some of the slides.