TABLE OF CONTENTS

1. INTRODUCTION
 1.1 OVERVIEW
 1.2 USE IN ACCELERATORS

2. DSP EVOLUTION AND CURRENT SCENERY
 2.1 DSP EVOLUTION
 2.2 CURRENT MAINSTREAM DSPS

3. DSP CORE ARCHITECTURE
 3.1 INTRODUCTION
 3.2 FAST DATA ACCESS
 3.3 FAST COMPUTATION
 3.4 NUMERICAL FIDELITY
 3.5 FAST-EXECUTION CONTROL

4. DSP PERIPHERALS
 4.1 INTRODUCTION
 4.2 INTERCONNECT & DATA I/O
 4.3 SERVICES
 4.4 C6713 EXAMPLE
 4.5 MEMORY INTERFACING
 4.6 DATA CONVERTER INTERFACING
 4.7 DSP BOOTING

5. RT DESIGN FLOW: INTRODUCTION

6. RT DESIGN FLOW: S/W DEVELOPMENT
 6.1 DSP PROGRAMMING INTRODUCTION
 6.2 DEVELOPMENT SETUP AND ENVIRONMENT
 6.3 LANGUAGES: ASSEMBLY, C, C++, GRAPHICAL
 6.4 RTOS
 6.5 CODE BUILDING PROCESS

7. RT DESIGN FLOW: DEBUGGING
 7.1 BUGS AND DEBUGGING
 7.2 SIMULATION
7.3 EMULATION
7.4 TRADITIONAL EMULATION TECHNIQUES
7.5 REAL-TIME DEBUGGING

8. RT DESIGN FLOW: ANALYSIS AND OPTIMISATION
 8.1 INTRODUCTION
 8.2 OPTIMISER ON
 8.3 ANALYSIS TOOLS
 8.4 OPTIMISATION GUIDELINES

9. RT DESIGN FLOW: SYSTEM DESIGN
 9.1 INTRODUCTION: DSP AND ARCHITECTURE CHOICE
 9.2 DSP: FIXED VS. FLOATING
 9.3 DSP: BENCHMARKING
 9.4 ARCHITECTURE: MULTI-PROCESSING OPTION
 9.5 ARCHITECTURE: RADIATION EFFECTS
 9.6 ARCHITECTURE: INTERFACES
 9.7 CODE DESIGN: INTERRUPT-DRIVEN VS. RTOS
 9.8 CODE DESIGN: GOOD PRACTICES
 9.9 GENERAL RECOMMENDATIONS

10. RT DESIGN FLOW: SYSTEM INTEGRATION
 10.1 INTRODUCTION
 10.2 GOOD PRACTICES

11. PUTTING IT ALL TOGETHER ... A DIGITAL SYSTEM EXAMPLE: