
HTCondor Threat Models

Greg Thain

Center for High Throughput Computing

Department of Computer Sciences

University of Wisconsin-Madison

Definition

Grammar

Of
HTCondor

Threat
Models

Other
security

concerns?

2

Overview

Big Boss: "Make sure the pool is secure"

3

• Site needs to decide what to prevent from happening
• Depends on the site

• Academic? Research? Commercial? Defence? Distributed? Local?

• The set of things you want to prevent is your "Threat Model"
• And if maybe you want to log these things to prove that you are preventing

• Useful to think this through before trying to implement anything

"If you don't know where you are going, any road will get you there."

But what does "secure" mean?

4

• Entities / Nouns / Classes
• Jobs or Job Sets

• Execute Points (worker nodes)

• Users (submitters/owners)

• Sandboxes / data

• HTCondor services themselves

See the experimental "htcondor" tool for more

Digression: Grammar of HTCondor

5

• Do we want to prevent some jobs from entering the system
• First reaction: Is this based on "user identify / identification"?

• Capability vs (Identity + Authorization map)
• Bootstrap from some other security system?

• Local identify

• Munge
• SSL, etc.

• Local vs. Remote?

• Does the content or type of the job matter?

• Access Point is the front door – where most of the checks are
• Also be aware of the schedd's audit log

• Do we care about what a valid job does?
• Better to prevent? Or better to check?

Threat model: Jobs

6

• Do we want to prevent some worker nodes from "stealing" jobs?
• Impossible in general to "prove" correct jobs execution

• Do we want to prevent a job from attacking the worker node?

• How do we do this in a glidein world?

Threat model: Worker nodes / slots

7

• Can we prevent a AP from joining the pool?

• Not just preventing an invalid job from being placed in a known
AP?

Threat model: Other services

8

• If we are identifying users, are there some we want to
• Prohibit from submitting jobs?

• Prohibit from setting up new worker nodes

• Do we want to prevent users from running too many jobs?

• Do we want to tie a group to a job type
• Analysis vs production? Multi-core vs single core?

• Do we want to prevent users from joining arbitrary groups?

• Do we want to limit where certain users' jobs run?

Threat model: Users and groups

9

• Do we want to encrypt at rest the transferred sandbox?

• Do we need to encrypt the transfers on the wire?

• How do we authorize 3rd party transfers?

• Do we need integrity checks for transferred data

• Do we need to hide one job's sandbox from another

Threat model: Sandboxes and data

10

Threat model: Services themselves

• For a secure pool, HTCondor daemons must authenticate
themselves

• HTCondor supports several mechanisms :
• Host based (by just using source IP address)
• File System (FS) – used by schedd by default
• Munge
• Pool Password (PASSWORD)
• KERBEROS
• SSL
• IDTokens / SciTokens
• GSI

Thank you and questions

Thank you – Questions?

This work is supported by the NSF under Cooperative Agreement OAC-2030508. Any options, findings,

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.

