
IDTOKEN Authentication in the

HTCondor Software Suite (HTCSS)

European HTCondor Workshop 2022

Todd Tannenbaum

Center for High Throughput Computing

University of Wisconsin-Madison

› Introduction and Motivation

Need for authentication in HTCSS

Need for yet another authentication method

› Basic Concepts and Usage

For Admins: Using IDTOKENS to secure your Pool

For Users: Using IDTOKENS to utilize a remote Access Point

› Advanced Topics

Invalidation

Multiple signing keys, multiple tokens

Token Requests

How does HTCSS securely present IDTOKENS

Outline

2

Introduction and Motivation

3

1. HTCondor services (aka

daemons) authenticating to

remote HTCondor services

 Only allow trusted nodes into

the pool

Need for Authentication in HTCSS

4

2. Users authenticating to an

Access Point (schedd)

 Need to know who owns which

jobs

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd
3. Admins authenticating to

an HTCondor service

 Only allow trusted users to

make administrative changes
condor_submit

condor_rm

…

condor_reconfig

condor_off

condor_userprio

condor_drain

…

› Authentication method results an identity

› Identities are granted authorizations via HTCSS

configuration, e.g.

After Authentication comes Authorization

5

Processes that authenticate as user condor

are considered services in my HTCondor Pool

ALLOW_DAEMON = condor@mysite

Users alice and bob can submit jobs

ALLOW_WRITE = alice@mysite, bob@mysite

root or condor can do administration

ALLOW_ADMINISTRATOR = root@mysite, condor@mysite

› HTCSS can perform authentication via many different methods, but

they all had shortcomings or complications…

 FS (filesystem) : Cannot work over the network, since the server

challenges the client to create a file with proper ownership in /tmp

 POOL (pool password): Only for daemons, not for tools / users.

 SSL, GSI, SCITOKENS, KERBEROS, MUNGE: Requires significant setup

work and/or installations from third-party for tools/services

› Wanted a solution that is self-contained, works over the network,

and works for daemons or users using tools

Thereby suitable for a "secure by default" installation

Why yet another authentication method?

6

BASIC CONCEPTS AND USAGE

7

› An IDTOKEN contains:

An Identity. Also

• Issuer, Unique ID, Issued date, possibly an Expiration date.

• Authorization limits. If present, these reduce the authorizations

configured at the server – it does NOT add authorizations.

All signed with a Digital Signature (using a secret signing key

stored on the server) to prove authenticity

Serialized out as an alphanumeric string and stored in a file.

› An IDTOKEN is always presented by a client to a server.

The server must have access to the same secret key that was

used to sign the client's token.

The IDTOKEN

8

issued date →

issuer →

unique id →

identity →

Example 1 - For Admins:

Using IDTOKENS to secure your Pool

(or exactly how does get_htcondor setup security?)

Example 2 - For Users:

Using IDTOKENS to utilize a remote Access Point

Two Concrete Examples

9

Example 1: IDTOKENS to secure a pool

10

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg

The key to a secure pool is to

only allow trusted (authenticated and

authorized) startds and schedds to advertise

into the collector.

› 1. Create a signing key file

on the central manager

11

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg

A random key will be created by

default at collector startup, or

explicitly create with tool:

condor_store_cred add -c

Signing key is stored by default

in file

/etc/condor/passwords.d/POOL

Example 1: IDTOKENS to secure a pool

› 2. Create an IDTOKEN file with

identity "condor" on central

manager

Use tool
condor_token_create -identity condor@cm.myorg

12

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg

› 1. Create a signing key file

on the central manager

Example 1: IDTOKENS to secure a pool

mailto:condor@cm.myorg

› 3. Copy this IDTOKEN file

to each trusted server you

want to join your pool

Place file into directory

/etc/condor/tokens.d

13

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg› 2. Create an IDTOKEN file with

identity "condor" on central

manager

Use tool
condor_token_create -identity condor@cm.myorg

› 1. Create a signing key file

on the central manager

Example 1: IDTOKENS to secure a pool

mailto:condor@cm.myorg

› What about securing

administrator commands?

› Say we want root on the

central manager to be able to

issue admin commands to

remote access points and

worker nodes…. ?
 Hint: It won't work – the access

point and worker nodes cannot

validate the token (no signing key)

14

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

condor_reconfig

condor_off

condor_userprio

condor_drain

…

Example 1: IDTOKENS to secure a pool

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

› What about securing

administrator commands?

› Say we want root on the

central manager to be able to

issue admin commands to

remote access points and

worker nodes…. ?
 Hint: It won't work – the access

point and worker nodes cannot

validate the token (no signing key)

 A Solution: Place the signing key on

all trusted nodes in your pool! Voila!

15

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

ALLOW_DAEMON = condor@cm.myorg

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

condor_reconfig

condor_off

condor_userprio

condor_drain

…

Example 1: IDTOKENS to secure a pool

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

ALLOW_ADMINISTRATOR = \

condor@cm.myorg

16

Central Manager

negotiator

collector

Access Point

schedd

Worker Node

startd

use security:get_htcondor_tokens

use role:CentralManager
› This diagram depicts how a

pool is configured for security

after installing via the

get_htcondor tool!

› You can learn a lot by

inspecting output from

curl -fsSL get.htcondor.org | bash -s -- --execute cm.org

and

condor_config_val use security:get_htcondor_idtokens

use security:get_htcondor_tokens

use role:Execute

use security:get_htcondor_tokens

use role:Submit

Example 1: IDTOKENS to secure a pool

Example 2: Using a remote Access Point

17

Access Point

schedd

condor_submit

condor_rm

…

Bob is a normal user (no root access)

Bob can ssh into an access point and submit.

But he wants to submit from his laptop…

› Step 1: Bob does a ssh login to his access point

 He cannot use condor_token_create; only root can read

signing keys in /etc/condor/passwords.d … so instead…

› Step 2: Bob creates an IDTOKEN with identity "Bob"

via condor_token_fetch tool

 condor_token_fetch authenticates to the schedd (via FS,

filesystem auth), asks the schedd to create an IDTOKEN

on behalf of the user’s identity. Resulting IDTOKEN identity

is identical to authenticated identity.

› Step 3: Bob copies output from

condor_token_fetch to his laptop, storing it in a

file in directory ~/.condor/tokens.d. Bob can now

access the remote schedd as "Bob".

Voila!

Example 2: Using a remote Access Point

18

Access Point

schedd

condor_submit

condor_rm

…

condor_store_cred add –c : Command to store a signing key.

condor_token_create : Allows anyone who can read a signing

key (usually just root) to create and sign an IDTOKEN with any

given identity. Example with attenuation (auth limits, expiration):

condor_token_fetch : Authenticate with a daemon and create an

IDTOKEN on behalf of the user’s identity.

condor_token_list : display properties of available IDTOKENS by

scanning IDTOKEN directories

Summary of Commands

19

/etc/condor/passwords.d/ : Directory containing signing keys.

Default signing key is in a file named "POOL" in this directory.

Only readable/writeable by root.

/etc/condor/tokens.d : Directory containing IDTOKEN files used

by process with root access (HTCSS daemons, administrators

with sudo). Only readable/writeable by root.

~/.condor/tokens.d : Directory in a user's home directory

containing IDTOKEN files used by a process without root access

(unprivileged users). Only readable/writeable by that user.

All default path locations can be changed via configuration

Summary of Default Pathnames

20

ADVANCED TOPICS

21

› How does a client securely present IDTOKENS to a remote server?

 The digital signature of the token is used as a shared secret to initiate a secure

communication channel over the network (via the AKEP2 protocol).

› How can I perform Token Revocation?

 You could remove authorization of the identity, e.g., in the config put

DENY_WRITE = todd@cm.my.org

 A classad constraint expression that can conditionally refuse tokens based on any attribute,

such as identity, date range when issued, serial number.
• See examples in the IDTOKENS section of the HTCSS Manual: https://tinyurl.com/ygqsc94j

 You can remove the signing key file, which effectively invalidates all tokens signed with that

key

› How does a client decide which token to use?

 If the tokens.d directory has multiple files, they are scanned in lexical order, and first token

that was issued from the server's trust domain and signed by a key file still present on the

server is selected.

› IDTOKENS are follow the JSON Web Token (JWT) standard. Why do I care?

› Is there an alternative to users doing scp or copy-n-paste of tokens?

Advanced Q&A

22

23v9.x…

Slide courtesy of Brian Bockelman's talk "Security

in HTCondor 9.0" at HTCondor Week 2021…

Thank You!

Follow us on Twitter!

https://twitter.com/HTCondor

24

This work is supported by NSF under Cooperative Agreement OAC-2030508 as part of the PATh

Project. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the NSF

https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/

