
Job Wrapper scripts:
Problems and Alternatives

Greg Thain
Center for High Throughput Computing

University of Wisconsin - Madison



Reliably running jobs
(even on unreliable places)

Greg Thain
Center for High Throughput Computing

University of Wisconsin - Madison



Outline

A Very Short talk about "reliability"

Review of how HTCondor runs jobs

Problems with wrappers under HTCondor

Discuss solutions (some new, some old)

With the occasional simplification indicated by*



Reliabillity



What do we mean by running jobs reliably

Never having a problem?

No machine crashes

No network hiccups

No disk failures?

No machine running slower than it should?



Why do we accept the existence of failures?

A) We have to

B) We get more machines to use.
HTC should be happy to run on imperfect machines

e.g. gamer gpus



For us, reliability means

• We can detect errors

• We can classify errors

• We can report errors

• We can respond to errors
• This one is beyond our scope of this talk



Review how HTCondor runs jobs



condor_starter runs the job on the EP*

Makes a scratch directory, e.g. /var/lib/execute/dir_1234

Starts the program named in the executable = line in the submit file



How you think of your program…
Makes a scratch directory, e.g. /var/lib/execute/dir_1234

Starts the program named in the executable = line in the submit file

B
y
 A

k
a

n
o

T
o

E
-

O
w

n
 w

o
rk

, 
C

C
 B

Y
-S

A
 4

.0
, 

h
tt

p
s
:/
/c

o
m

m
o
n

s
.w

ik
im

e
d

ia
.o

rg
/w

/i
n

d
e

x
.p

h
p

?
c
u

ri
d

=
8

6
1
3

9
3

6
1



How you think of your program…
Makes a scratch directory, e.g. /var/lib/execute/dir_1234

Starts the program named in the executable = line in the submit file



How you think of your program…
Makes a scratch directory, e.g. /var/lib/execute/dir_1234

Starts the program named in the executable = line in the submit file



How HTCondor sees your program*…
Makes a scratch directory, e.g. /var/lib/execute/dir_1234

Starts the program named in the executable = line in the submit file

Just an opaque box



HTCondor knows…

• Memory usage inside box

• CPU/GPU usage inside box

• Disk usage inside box

• Wall clock time

and….

• Exit code of job's main process (!)
(and some other stuff)

And sends this back to the AP!

But not quite perfectly opaque..



Let's talk about exit codes…

• Unix exit code is eight bits a program returns to parent at exit 

• ONLY WAY the program can communicate to the starter*

• By convention "zero" (0) means "good", all else "bad"

• But that's just a convention

• TRIVIA:  What's the exit code for the "grep" program?



HTCondor does what about exit codes?

• Pure HTCondor doesn't do anything (just records them)
• Should it – hold job with non-zero exit?  Remove?  Send email?

• DAGMan has more options – can resubmit
• By default, dagman assumes non-zero exit is failure, and blocks DAG

• But HTCondor gives you knobs™

max_retries = 7

success_exit_code = 0



Wrapper scripts…



Ok, so what's all this about shell scripts?

• Exit code of a script is either

• Argument to exit shell builtin function      

OR

• Exit code of last command the script ran



Typical shell wrapper for a job looks like

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

some_cleanup

some_more_cleanup



Pop Quiz: what's the exit code?

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

some_cleanup

some_more_cleanup



Pop Quiz: how can we fix this?

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

some_cleanup

some_more_cleanup



Doesn't seem to hard to fix at first…

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

saved_exit = $?

some_cleanup

some_more_cleanup

exit $saved_exit



But to fix everything is tedious, and error-prone

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

saved_exit = $?

some_cleanup

some_more_cleanup

exit $saved_exit

What if there is an error 

here?

Is this kind of error the 

same as a job error?

Do we want to respond 

the same way?



What's the bigger picture?

#!/bin/sh

some_setup

some_more_setup

the_actual_executable

some_cleanup

some_more_cleanup

Setup the environment

Cleanup the environment



Remember how HTCondor sees the job?

Fundamental Problem:

HTCondor can't differentiate a setup/cleanup problem

From a bona-fide job problem

(and we want to treat these differently)



That is to say…

• Wrappers hide activity from HTCondor

• Error codes are NOT sufficient!
• And error codes belong to namespace

• of the job – domain of the job 
• No Unix error for "failed to xfer sandbox"
• Some Belong to the HTCondor domain



How to fix, and run more reliably



The proper fix
HTCondor EP

mkdirs scratch directory

Starts the job

some_setup

some_more_setup

the_job_itself

some_cleanup

some_more_cleanp



This is a common CS pattern

• Separating initialization / teardown from main work

• Object Oriented Constructors/Destructors do this

• Two Phase commit "Prepare Tran"

• And HTCondor knows all about errors in parts it manages

• So it can send them back home to the AP to make decisions



The means translating shell into submit

• Some work, worth it, not too hard.

• Read submit man page for all possibilities

• Some examples follow



Wrapper Env var

#!/bin/sh

export MYVAR=hello

..

universe = vanilla

environment=MYVAR=hello

…

queue

Submit language



Wrapper untar

#!/bin/sh

tar xzf a.tgz

..

rm –fr a/

universe = vanilla

transfer_input_files = a/

…

queue

Submit language



Wrapper wget

#!/bin/sh

wget http://..

..

rm –fr a/

universe = vanilla

transfer_input_files = \

http://...

…

queue

Submit language



We asked local facilitators "why wrappers?"

Four very common reasons
1. wget'ing file from 3rd party server

1. Or putting output files there

2. Setting an environment variable to point to scratch dir

3. Full description of inputs and outputs before and after job run

4. wget + untar



Wrapper wget

#!/bin/sh

wget http://... 

..

universe = vanilla

Transfer_input_files = \

http://example.com/foo/bar

queue

Submit language



Wrapper ls -R

#!/bin/sh

/bin/ls –CFR

my_real_job

/bin/ls -CFR

universe = vanilla

manifest = true

manifest_dir = some_directory

…

queue

Submit language



Wrapper wget
+ untar

#!/bin/sh

wget http://..

tar xzf a.tar

..

rm –fr a/

universe = vanilla

transfer_input_files = \

untar:http://.../foo.tar.gz

…

queue

Submit language



Quiz time:

• Which is faster –

HTCondor explicit file transfer ?
Or

Shared Filesystem?



What an expert will answer:

"It depends"



But what is a deeper answer?

• What's the error domain of a shared file i/o error

• Can the job report an shared file i/o error back to HTCondor?
• NO!

• Reliability can give better time-to-finish than something higher pref



Summary

• The more we tell HTCondor to do, the better outcomes 

• A bit of work to translate familiar shell to submit, but worth it
• But not all or nothing

• What are we missing that you still need these kinds of 
wrappers?



Thank you and questions

Thank you – Questions?

This work is supported by the NSF under Cooperative Agreement OAC-2030508.  Any options, findings,

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.


