
Container Universe
Greg Thain

Center for High Throughput Computing
University of Wisconsin - Madison

Overview

• Quick definition of container world

• Existing ways
• Docker Universe

• Singularity support

• Differences between docker and singularity

• Solution: Container universe

• Future work

In the beginning, there was Docker

Docker runs processes …

1. In a chroot like virtualized filesystem
1. (with escapes to the host filesystem)

2. Where the filesystem is fetched from a remote hub, then locally
cached, in a "stacked image" format

3. In cgroups that protect memory and CPU usage

4. Where the process runs as uid 0 by default
1. Using Linux capabilities to restrict most damage

5. Using the host's Linux kernel

A Mixed bag for HTC:

Docker runs processes …

1. In a chroot like virtualized filesystem
1. (with escapes to the host filesystem)

2. Where the filesystem is fetched from a remote hub, then locally
cached, in a "stacked image" format

3. In cgroups that protect memory and CPU usage

4. Where the process runs as uid 0 by default
1. Using Linux capabilities to restrict most damage

These we like!

In the beginning, there was Docker

Docker runs processes …

1. In a chroot like virtualized filesystem
1. (with escapes to the host filesystem)

2. Where the filesystem is fetched from a remote hub, then locally
cached, in a "stacked image" format
(and we are subject to network blocking if we pull too much…)

3. In cgroups that protect memory and CPU usage

4. Where the process runs as uid 0 by default
1. Using Linux capabilities to restrict most damage

These we Don't Like!

Solution: Docker Universe

• Unrestricted Docker allows root access to host

• HTCondor's Docker Universe limits docker options
• To a "safe" subset

• Translated from condor submit language

• With the usual scratch directory mounted into the container from host

• Allows the user to run an arbitrary container

Example submit file

universe = docker

docker_image = ubuntu:22

Note that executable is optional

executable = run_me.sh

arguments = one two three

Output = output

queue

EP Process hierarchy in vanilla universe

condor_master

condor_startd

condor_starter

Users's job

Users's

job kids

Users's

job kids

Users's

job kids

EP Process hierarchy in docker universe

condor_master

condor_startd

condor_starter

Users's job

Users's

job kids

Users's

job kids

Users's

job kids

Docker run

condor_master

Docker Daemon

Has root

Problems with Docker Uni

• Requires systemd-startd docker daemon

• With root
• (difficult for glideins)

• User job not in same Unix process tree as starter
• Ssh_to_job headaches

• HTCondor doesn't see or control cgroups

• Resources usage measurement works differently

• We can't use condor file xfer to send image
• Image must come from local cache

Enter … Singularity

Mainly added to HTCondor to support glideins

Singularity:

• Needs setuid, but not daemon (changes happening now…)

• Can run from image in a single file

• Transferred by HTCondor

• Doesn't contain with cgroups

• No network isolation

Singularity support in HTCondor is different

Glidein folks wanted the EP Admin to be in charge

not the user

Singularity support in condor is a EP-side KNOB, e.g.

SINGULARITY_JOB = true

SINGULARITY_IMAGE_EXPR = "/path/to/image"

Admin can wire expr to allow user to opt it, but site-specific

SINGULARITY_IMAGE_EXPR = Target.SingularityImage

Example singularity submit file

universe = vanilla

+SingularityImage = /path/to/ubuntu_22

executable = run_me.sh

arguments = one two three

Output = output

queue

Problem

• Most users don't care which container runtime they use

• "Docker" is kind of generic name

• But they do want to have the same submit file for glidein and
local

And then things got even worse…

• Singularity project forked into Singularity and Apptainer

• Red Hat reimplemented most of docker as "podman"
• Without a daemon, so we kind of like this..

• Others wrote other container systems (Charlie cloud, etc.)

• So what to do?

XKCD 127

Enter … container universe

• The startd detects if singularity or docker work
• By running test jobs

• And advertises attributes about those runtimes
• HasSIF

• HasDocker

• HasSandbox

Users just ask for a container and image

universe = container

container_image = /path/to/ubuntu_22

executable = run_me.sh

arguments = one two three

Output = output

queue

And matchmaking does the rest

• With new startd-side job transforms
• That can mutate a vanilla job into a container job

• Note docker universe and old singularity support will work
• For foreseeable future

Assume container is on EP

universe = container

container_image = /path/to/ubuntu_22.sif

Should_transfer_image = false

executable = run_me.sh

arguments = one two three

Output = output

queue

But under the hood, same mechanisms

• Just like saying Universe = docker when docker matches

• Or SingularityJob = true when singularity matches

A container universe job is still a job…

• Has a job log

• Works with DAGMan

• Condor_ssh_to_job (mostly) works

• Condor_tail works

• User level checkpointing works..

Future work

• Add more container runtimes
• Podman

• Unprivileged docker

• If job could run on multiple runtimes, who chooses?

• Add automatic checkpoint / restore
• Creates problems opportunities for checkpoint storage and migration

Thank you and questions

Thank you – Questions?

This work is supported by the NSF under Cooperative Agreement OAC-2030508. Any options, findings,

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.

