
Job Isolation
Greg Thain

Center for High Throughput Computing
University of Wisconsin - Madison

• Why put contain jobs?

• Ersatz HTCondor containment

• Docker containers

• Singularity containers

2

Outline

1) Protect the machine from the job.

2) Protect the job from the machine.

3) Protect one job from another.

3 Protections

3

• Allows nesting

• Need not require root

• Can’t be broken out of

• Portable to all OSes

• Allows full management:
• Creation // Destruction

• Monitoring

• Limiting

The ideal container

4

• CPU

• Memory

• Disk

• Network

• Signals

• L1-2-3 cache

Resources a job can (ab)use

5

HTCondor’s containment

6

• You can’t kill what you can’t see

• Requirements:
• RHEL 6 or later

• USE_PID_NAMESPACES = true

• (off by default)

• Must be root (in HTCondor's implementation – future work here)

PID namespaces

7

PID Namespaces

8

Init (1)
Master (pid 15)

Startd (pid 26)

Starter (pid 39)

Job B (pid 2)

Starter (pid 73)

Job A (pid 2)

Condor_init (pid 1) Condor_init (pid 1)

• Or, “Shared subtrees”

• Goal: protect /tmp from shared jobs

• Requires
• Condor 8.0+

• RHEL 5

• HTCondor must be running as root

• MOUNT_UNDER_SCRATCH = /tmp,/var/tmp

MOUNT_UNDER_SCRATCH

9

MOUNT_UNDER_SCRATCH=/tmp,/var/tmp

Each job sees private /tmp, /var/tmp

Downsides:

No sharing of files in /tmp

MOUNT_UNDER_SCRATCH

10

• Two basic kernel abstractions:

1) nested groups of processes

2) “controllers” which limit resources

Control Groups v1
aka “cgroups”

11

• Implemented as filesystem
• Mounted on /sys/fs/cgroup,

• Groups are per controller
• E.g. /sys/fs/cgroup/memory/my_group

• /sys/fs/cgroup/cpu/my_group

• Interesting contents of virtual groups:
• /sys/fs/cgroup/memory/my_group/tasks

• Condor default is
• /sys/fs/cgroup/<controller>/htcondor

• Compare with systemd’s slices

Control Cgroup setup

12

• Cpu
• Allows fractional cpu limits

• Memory
• Need to limit swap also or else…

• … any many others

Cgroup controllers

13

• Requires:
• RHEL7

• HTCondor 8.0+

• Rootly condor

• And… condor_master takes care of the rest

Enabling cgroups

14

• Starter puts each job into own cgroup
• Named exec_dir + job id

• Procd monitors
• Procd kills atomically all procd within a job

• CPUS attr * 100 > cpu.shares

• MEMORY attr into memory controller

• CGROUP_MEMORY_LIMIT_POLICY
• Hard or soft

• Job goes on hold with specific message

Cgroups with HTCondor

15

• Lots of problems with v1:

• Independent controllers are difficult to reason about

• Some controllers don't work well – i.e. "soft" vs "hard" memory

• El9 gets v2, not backwardly compatible!

• Hope to get this in by end of year!

Enter cgroup v2

16

• The scratch dir is created at runtime, and sized by
• RequestDisk

• If job uses more than RequestDisk, goes on hold

• Cleaning up scratch dir is quick – one system call

• Monitoring scratch dir is quick – one system call

New in 10:
STARTD_ENFORCE_DISK_LIMITS

17

• Either "thinpool" lvm blocks
• Requires SysAdmin to set up lvm

• THINPOOL_NAME = htcondor_lv

• THINPOOL_VOLUME_GROUP_NAME = htcondor_vg

• Or "thick pool"
• No other knobs needed

What backs the file system?

18

Thank you!

Questions?

19

Thank you and questions

Thank you – Questions?

This work is supported by the NSF under Cooperative Agreement OAC-2030508. Any options, findings,

conclusions or recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the NSF.

