
Self-Checkpointing Jobs
with HTCondor

Todd L Miller

Center for High Throughput Computing



What is Checkpointing? 
A program is able to save progress periodically to a file and resume from that saved 
file to continue running, losing minimal progress.

2



Why Self-Checkpoint? 

• Interruptions happen: 
• Hardware or networking failures

• Cluster/node policy (jobs can only run for 8 hours 
before getting killed)

• Using opportunistic or backfill resources with no 
runtime guarantee

• Self-checkpointing allows you to make 
progress through interruptions, especially for 
longer-running jobs.  

3

Li
gh

tn
in

g 
b

y 
B

er
n

ar
N

o
va

ly
if

ro
m

 t
h

e
 N

o
u

n
 P

ro
je

ct



Requirements: Your Code

• Ability to checkpoint and restart: 
• Checkpoint: Periodically write state to a file on disk.

• Restart: Code can both find the checkpoint file and 
can resume from it.

• Exit: Code exits with a specific exit code after writing 
a certain number of checkpoints, but then exits with 
a different code after writing final output.

• (May need a wrapper script to do some of this.)

• Ability to checkpoint sufficiently* frequently

4

Fi
le

 b
y 

Ta
n

vi
r 

Is
la

m
 f

ro
m

 t
h

e 
N

o
u

n
 P

ro
je

ct
G

ea
rs

 b
y 

G
re

go
r 

C
re

sn
ar

fr
o

m
 t

h
e 

N
o

u
n

 P
ro

je
ct

* Varies by code and available resources



Context: HTCondor

• The self-checkpointing executable is going to be run many times (to 
completion) by HTCondor. 

• This tutorial assumes that HTCondor is managing job files (using file 
transfer, not a shared file system).

• This talk applies to jobs using the vanilla (or Docker) universe. 

• The features discussed are first available in HTCondor 8.8.4/8.9.3; with 
improvements as of 9.0.6.
• … and bug fixes in 9.0.11, 9.3.2., 9.5.0, 9.5.1, and 9.10.0.

• … we’re glad to see it’s getting used!  Thanks for finding our bugs for us.

5



6

Executable Exits After Checkpoint

• Each executable run: 
• Produces checkpoint file(s).
• Exits with a specific code when checkpointing, and a final exit code when done. 

• Note that the executable, on its own, won't run a complete execution. It needs 
an external process to make it repeat. 

exit(85) exit(85) exit(85) exit(0)

x N



7

Save Checkpoint File/Resume with HTCondor

• HTCondor will: 
• Restart the executable until the overall calculation is done (exit 0).

• Copy the checkpoint file(s) to a persistent location, to facilitate restarts if the job is 
interrupted. 

exit(85) exit(85) exit(85) exit(0)

x N



Save Checkpoint File/Resume with HTCondor

8

executable = 
checkpoint_exit_code = 85
transfer_checkpoint_files =       , _condor_stdout

exit(85) exit(85) exit(85) exit(0)

x N



Job Submitted

9

Submit Directory/

job.submit

executable.py

job.log



Job Starts, Executable Starts

10

Submit Directory/

Execute Directory/

Execute Node N

job.submit

executable.py

job.log

executable.py

_condor_stdout

_condor_stderr



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Checkpoints

11

Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Execute Directory/



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Exits, Checkpoint Spooled

12

Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

exit 85

Execute Directory/



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Started Again

13

Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/



Checkpoint Cycle Continues

14



Executable Interrupted

15

Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/

executable.py

checkpoint.txt

_condor_stdout

_condor_stderr



Job Idle

16

Submit Directory/

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout



Job Restarts, Executable Restarts

17

Submit Directory/ Execute Node M

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/

executable.py

checkpoint.txt

_condor_stdout

_condor_stderr



Checkpoint Cycle Continues

18



Final Execution: Executable Creates Output

19

Submit Directory/

Execute Directory/

Execute Node M

job.submit

executable.py

job.log

executable.py

checkpoint.txt

results.txt

_condor_stdout

_condor_stderr

Spool Directory/

checkpoint.txt

_condor_stdout

exit 0



Output Returned

20

Submit Directory/

job.submit

executable.py

results.txt

job.log

job.out

job.err



Think About Output Files

• Same mechanisms for transferring output at the end of the job (triggered 
by executable's exit 0)
• By default, new files are transferred back to the submission directory

• To transfer specific output files or the contents of directories, use: 
transfer_output_files = file1, outputdir/

• ANY output file you want to save between executable iterations (like a log 
file), should be included in the list of transfer_checkpoint_files

• This includes stdout and stderr (if using < 9.0.6.)!

21



Testing and Troubleshooting

• Simulate a job interruption: 
• condor_vacate_job JobID

• Examine your checkpoint files in the SPOOL directory: 
• Use condor_evicted_files JobID

• To find the SPOOL directory: condor_config_val SPOOL

• Look at the HTCondor job log for file transfer information.

22



Best Practices

• Scaling Up
• How many jobs will be 

checkpointing? 

• How big are the checkpoint files? 

• How much data is that total? 

• Checkpoint Frequency
• How long does it take to produce a 

checkpoint and resume? 

• How likely is your job to be 
interrupted? 

23

Avoid: 
- Filling up the SPOOL directory.
- Transferring large checkpoint 

files.

Avoid: 
- Spending more time 

checkpointing than running.
- Jobs that will never reach a 

checkpoint. 



Alternative Checkpointing Method

• If code can't exit after each checkpoint, but only run + 
checkpoint arbitrarily, transfer of checkpoint files can be 
triggered by eviction. 

• Search for "when_to_transfer_output" on the condor_submit 
manual page; read about ON_EXIT_OR_EVICT

• This method of backing up checkpoint files is less resilient, as it 
won't work for other job interruption reasons (hardware issues, 
killed processes, held jobs).

24

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html


Resources

• HTCondor Manual
• Manual > Users' Manual > Self Checkpointing Applications

• https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-
applications.html

• Materials from the OSG Virtual School 2021
• OSG Virtual School > Materials > Overview or Checkpointing Exercises

• https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-
for-long-running-jobs

• A longer, recorded version of this tutorial with a demo:
• https://videos.cern.ch/record/2782077

25

https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://videos.cern.ch/record/2782077


Questions

26



Acknowledgements
This work is supported by NSF under Cooperative Agreement OAC-2030508 as part 
of the PATh Project.  Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the author(s) and do not necessarily reflect 
the views of the NSF.

27

https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/

