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What is Checkpointing? 
A program is able to save progress periodically to a file and resume from that saved 
file to continue running, losing minimal progress.
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Why Self-Checkpoint? 

• Interruptions happen: 
• Hardware or networking failures

• Cluster/node policy (jobs can only run for 8 hours 
before getting killed)

• Using opportunistic or backfill resources with no 
runtime guarantee

• Self-checkpointing allows you to make 
progress through interruptions, especially for 
longer-running jobs.  
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Requirements: Your Code

• Ability to checkpoint and restart: 
• Checkpoint: Periodically write state to a file on disk.

• Restart: Code can both find the checkpoint file and 
can resume from it.

• Exit: Code exits with a specific exit code after writing 
a certain number of checkpoints, but then exits with 
a different code after writing final output.

• (May need a wrapper script to do some of this.)

• Ability to checkpoint sufficiently* frequently
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* Varies by code and available resources



Context: HTCondor

• The self-checkpointing executable is going to be run many times (to 
completion) by HTCondor. 

• This tutorial assumes that HTCondor is managing job files (using file 
transfer, not a shared file system).

• This talk applies to jobs using the vanilla (or Docker) universe. 

• The features discussed are first available in HTCondor 8.8.4/8.9.3; with 
improvements as of 9.0.6.
• … and bug fixes in 9.0.11, 9.3.2., 9.5.0, 9.5.1, and 9.10.0.

• … we’re glad to see it’s getting used!  Thanks for finding our bugs for us.
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Executable Exits After Checkpoint

• Each executable run: 
• Produces checkpoint file(s).
• Exits with a specific code when checkpointing, and a final exit code when done. 

• Note that the executable, on its own, won't run a complete execution. It needs 
an external process to make it repeat. 

exit(85) exit(85) exit(85) exit(0)

x N
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Save Checkpoint File/Resume with HTCondor

• HTCondor will: 
• Restart the executable until the overall calculation is done (exit 0).

• Copy the checkpoint file(s) to a persistent location, to facilitate restarts if the job is 
interrupted. 

exit(85) exit(85) exit(85) exit(0)

x N



Save Checkpoint File/Resume with HTCondor
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executable = 
checkpoint_exit_code = 85
transfer_checkpoint_files =       , _condor_stdout

exit(85) exit(85) exit(85) exit(0)

x N



Job Submitted
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Submit Directory/

job.submit

executable.py

job.log



Job Starts, Executable Starts
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Submit Directory/

Execute Directory/

Execute Node N

job.submit

executable.py

job.log

executable.py

_condor_stdout

_condor_stderr



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Checkpoints
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Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Execute Directory/



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Exits, Checkpoint Spooled
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Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

exit 85

Execute Directory/



executable.py

checkpoint.txt

_condor_stdout

_condor_stderr

Executable Started Again
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Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/



Checkpoint Cycle Continues
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Executable Interrupted
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Submit Directory/ Execute Node N

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/

executable.py

checkpoint.txt

_condor_stdout

_condor_stderr



Job Idle
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Submit Directory/

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout



Job Restarts, Executable Restarts
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Submit Directory/ Execute Node M

job.submit

executable.py

job.log

Spool Directory/

checkpoint.txt

_condor_stdout

Execute Directory/

executable.py

checkpoint.txt

_condor_stdout

_condor_stderr



Checkpoint Cycle Continues
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Final Execution: Executable Creates Output
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Submit Directory/

Execute Directory/

Execute Node M

job.submit

executable.py

job.log

executable.py

checkpoint.txt

results.txt

_condor_stdout

_condor_stderr

Spool Directory/

checkpoint.txt

_condor_stdout

exit 0



Output Returned
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Submit Directory/

job.submit

executable.py

results.txt

job.log

job.out

job.err



Think About Output Files

• Same mechanisms for transferring output at the end of the job (triggered 
by executable's exit 0)
• By default, new files are transferred back to the submission directory

• To transfer specific output files or the contents of directories, use: 
transfer_output_files = file1, outputdir/

• ANY output file you want to save between executable iterations (like a log 
file), should be included in the list of transfer_checkpoint_files

• This includes stdout and stderr (if using < 9.0.6.)!
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Testing and Troubleshooting

• Simulate a job interruption: 
• condor_vacate_job JobID

• Examine your checkpoint files in the SPOOL directory: 
• Use condor_evicted_files JobID

• To find the SPOOL directory: condor_config_val SPOOL

• Look at the HTCondor job log for file transfer information.
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Best Practices

• Scaling Up
• How many jobs will be 

checkpointing? 

• How big are the checkpoint files? 

• How much data is that total? 

• Checkpoint Frequency
• How long does it take to produce a 

checkpoint and resume? 

• How likely is your job to be 
interrupted? 
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Avoid: 
- Filling up the SPOOL directory.
- Transferring large checkpoint 

files.

Avoid: 
- Spending more time 

checkpointing than running.
- Jobs that will never reach a 

checkpoint. 



Alternative Checkpointing Method

• If code can't exit after each checkpoint, but only run + 
checkpoint arbitrarily, transfer of checkpoint files can be 
triggered by eviction. 

• Search for "when_to_transfer_output" on the condor_submit 
manual page; read about ON_EXIT_OR_EVICT

• This method of backing up checkpoint files is less resilient, as it 
won't work for other job interruption reasons (hardware issues, 
killed processes, held jobs).
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https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html


Resources

• HTCondor Manual
• Manual > Users' Manual > Self Checkpointing Applications

• https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-
applications.html

• Materials from the OSG Virtual School 2021
• OSG Virtual School > Materials > Overview or Checkpointing Exercises

• https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-
for-long-running-jobs

• A longer, recorded version of this tutorial with a demo:
• https://videos.cern.ch/record/2782077
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https://htcondor.readthedocs.io/en/latest/users-manual/self-checkpointing-applications.html
https://opensciencegrid.org/virtual-school-2021/materials/#self-checkpointing-for-long-running-jobs
https://videos.cern.ch/record/2782077


Questions
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