

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

MC Proton Driver parameters: US siting FNAL from DUNE-era to MC-era

Jeffrey Eldred

Muon Collider Collaboration Meeting

October 12th, 2022

Neutrinos: Beam Power and Detector Size

DUNE long-baseline neutrino program calls for 2.4 MW

🛟 Fermilab

10/12/2022

2 Jeffrey Eldred | 2.4 MW Upgrade with RCS

DUNE physics program

Unambiguous, high precision measurements of Δm_{32}^2 , δ_{CP} , $\sin^2\theta_{23}$, $\sin^22\theta_{13}$ in a single experiment Discovery sensitivity to CP violation, mass ordering, θ_{23} octant over a wide range of parameter values Sensitivity to MeV-scale neutrinos, such as from a galactic supernova burst

Low backgrounds for sensitivity to BSM physics including baryon number violation

Proton Intensity Upgrade (PIU) (aka DUNE/LBNF Phase II driver, aka Booster Replacement, aka PIP-III, aka 2.4 MW Upgrade, Arguably aka Project X)

Acknowledgements & White Papers

Snowmass White papers related to DUNE/LBNF PIU upgrades

"A Cost-Effective Upgrade Path for the Fermilab Accelerator Complex" Sergei Nagaitsev and Valeri Lebedev

"An Upgrade Path for the Fermilab Accelerator Complex"

Rob Ainsworth, Joe Dey, Jeff Eldred, Roni Harnik, Jonathan Jarvis, Dave Johnson, Ioanis Kourbanis, David Neuffer, Eduard Pozdeyev, Mike Syphers, Sasha Valishev, Vyacheslav Yakovlev and Bob Zwaska

"Design Considerations for Fermilab Multi-MW Proton Facility"

Jeff Eldred, Sergei Nagaitsev, Vladimir Shiltsev, Mike Syphers, Sasha Valishev, and Bob Zwaska

"An 8 GeV Linac as the Booster Replacement in the Fermilab Power Upgrade"

Sergey Belomestnykh, Mattia Checchin, David Johnson, David Neuffer, Hasan Padamsee, Sam Posen, Eduard Pozdeyev, Vitaly Pronskikh, Nikolay Solyak, Vyacheslav Yakovlev

PIU-MC Group Pushpa Bhat, Jeff Eldred, Sergo Jindariani, Sergei Nagaitsev, David Neuffer, Sam Posen, Vladimir Shiltsev, Diktys Stratakis, Katsuya Yonehara,

🚰 Fermilab

Fermilab PIP-II Era

Jeffrey Eldred | 2.4 MW Upgrade with RCS

Fermilab PIU – "RCS" Option

Fermilab PIU – "Linac" Option

PIU Parameter Tables

Five versions of PIU have different implications for 8 GeV program.

Parameter	PIP-II	PIU: "RC	CS"	PIU: "Linac"		
Parameter	Booster	v1	v2	v1	v2	v3
Linac Energy	$0.8 \mathrm{GeV}$	$2 \mathrm{GeV}$	$2 \mathrm{GeV}$	8 GeV	$8 \mathrm{GeV}$	8 GeV
Minimum Linac Current	2 mA	2 mA	5 mA	2.5 mA	2.5 mA	5 mA
Rep. Rate	20 Hz	10 Hz	20 Hz	10 Hz	20 Hz	10 Hz
Ring Energy Inj-Ext	0.8-8 GeV	2-8 GeV	2-8 GeV	8 GeV	8 GeV	8 GeV
Ring Intensity	6.5 e12	26 e12	37 e12	25 e12	34 e12	31 e12
Number of batches	12	6	5	6	6	6
H ⁻ Linac Injected Power	17 kW	83 kW	240 kW	320 kW	860 kW	800 kW
8 GeV Beam Power from Ring [*]	160 kW	330 kW	$950 \mathrm{kW}$	320 kW	860 kW	800 kW
120 GeV Beam Power in MI**	1.2 MW	2.4 MW	2.8 MW	2.4 MW	3.1 MW	2.8 MW

* Total 8-GeV Beam Power, (2.4 MW MI program uses 160 kW)

- ~2 μ s pulses either from RCS or an 8 GeV Accumulator Ring.

🚰 Fermilab

10/12/2022

** DUNE/LBNF beam power strictly limited to 2.4 MW.

- all PIU scenarios deliver 2.4 MW for DUNE/LBNF.

PIU Parameter Tables

Five versions of PIU have different implications for 8 GeV program.

Parameter	PIP-II	PIU: "RC	5"	PIU: "Lin	ac"	
Parameter	Booster	v1	v2	v1	v2	v3
Linac Energy	$0.8 \mathrm{GeV}$	$2 \mathrm{GeV}$	$2 \mathrm{GeV}$	8 GeV	$8 \mathrm{GeV}$	8 GeV
Minimum Linac Current	2 mA	2 mA	5 mA	2.5 mA	2.5 mA	5 mA
Rep. Rate	20 Hz	10 Hz	$20~\mathrm{Hz}$	10 Hz	$20~\mathrm{Hz}$	10 Hz
Ring Energy Inj-Ext	0.8-8 GeV	2-8 GeV	2-8 GeV	8 GeV	$8 \mathrm{GeV}$	8 GeV
Ring Intensity	6.5 e12	26 e12	$37 \ e12$	25 e12	34 e12	31 e12
Number of batches	12	6	5	6	6	6
H ⁻ Linac Injected Power	17 kW	83 kW	240 kW	320 kW	860 kW	800 kW
$8 \text{ GeV Beam Power from Ring}^*$	160 kW	330 kW	$950 \mathrm{kW}$	320 kW	$860 \mathrm{kW}$	800 kW
120 GeV Beam Power in MI^{**}	1.2 MW	2.4 MW	$2.8 \mathrm{MW}$	$\parallel 2.4 \mathrm{~MW} \mid$	$3.1 \ \mathrm{MW}$	$2.8 \ \mathrm{MW}$

Minimal versions of PIU have about 320 kW at 8 GeV, roughly half of which is sent to the MI program.

PIU Parameter Tables

Five versions of PIU have different implications for 8 GeV program.

Parameter	PIP-II	PIU: "RO	CS"	PIU: "Li	nac"	
Parameter	Booster	v1	v2	v1	v2	v3
Linac Energy	$0.8 \mathrm{GeV}$	$2 { m GeV}$	2 GeV	$8 { m GeV}$	8 GeV	8 GeV
Minimum Linac Current	2 mA	2 mA	5 mA	2.5 mA	2.5 mA	5 mA
Rep. Rate	20 Hz	10 Hz	20 Hz	$10 \ \mathrm{Hz}$	20 Hz	10 Hz
Ring Energy Inj-Ext	0.8-8 GeV	2-8 GeV	2-8 GeV	$8 { m GeV}$	8 GeV	$8 \mathrm{GeV}$
Ring Intensity	6.5 e12	26 e12	37 e12	$25~\mathrm{e}12$	34 e12	31 e12
Number of batches	12	6	5	6	6	6
H ⁻ Linac Injected Power	17 kW	83 kW	240 kW	320 kW	860 kW	800 kW
8 GeV Beam Power from Ring [*]	160 kW	330 kW	950 kW	320 kW	860 kW	800 kW
120 GeV Beam Power in MI^{**}	1.2 MW	2.4 MW	2.8 MW	2.4 MW	3.1 MW	$2.8 \ \mathrm{MW}$

800-950 kW at 8 GeV available for only a small marginal cost.

These scenarios provide a clear path to Muon Colider Proton Driver.

From PIU to MC Proton Driver (MCPD)

12 Jeffrey Eldred | 2.4 MW Upgrade with RCS

High Level FNAL MCPD Parameters

Parameter	PIU Scenarios	MCPD Scenarios
Energy	8 GeV	8-16 GeV
Rep. Rate	10-20 Hz	5-20 Hz
Power	0.3-0.9 MW	1-4 MW
Proton Structure	$25-40$ e12 over 2 μs ring	40-120 e12 in four $1-3$ ns bunches

MCPD Energy: 8-16 GeV

- Starting from FNAL-PIU, doing less than 8 GeV doesn't make sense.
- Muons / MW and other production/capture design aspects appear to be relatively insensitive to changes in energy.
- Proton compression is a challenging aspect, energy helps space-charge.
- Energy can be a convenient way to boost beam power.

High Level FNAL MCPD Parameters

Parameter	PIU Scenarios	MCPD Scenarios
Energy	8 GeV	8-16 GeV
Rep. Rate	10-20 Hz	5-20 Hz
Power	0.3-0.9 MW	1-4 MW
Proton Structure	$25-40$ e12 over 2 μs ring	40-120 e12 in four $1-3$ ns bunches

Rep. Rate 5-20 Hz

- For a 10 TeV collider, the muon lifetime is ~0.1s. Luminosity will be heavily front-loaded for a 5-20 Hz repetition rate.

- The RCS/Linac beam would either be used directly or be reconfigured for lower repetition rate.

High Level FNAL MCPD Parameters

Parameter	PIU Scenarios	MCPD Scenarios
Energy	8 GeV	8-16 GeV
Rep. Rate	10-20 Hz	5-20 Hz
Power	0.3-0.9 MW	1-4 MW
Proton Structure	$25-40$ er 2 over 2 μs ring	40-120 e12 in four $1-3$ ns bunches

Power 1-4 MW

Proton Structure 40-120 e12 in four 1-3 ns bunches

- Intense ns-scale bunches maximize initial phase-space of muon beams.
 Assume four bunches will converge on target.
- Parameters targeting 2 e35 cm⁻²s⁻¹ luminosity for 10 TeV collider.
- Parameters achievable from proton driver perspective
 - Proton compressor ring is used to adapt PIU to MC PD pulses.
 - Preliminary assessment for space-charge and machine performance.

PIU-to-MCPD Scenarios

		MCPD 1	MCPD 2	MCPD 3
MCPD Parameters	Energy	8 GeV	12 GeV	16 GeV
	Pulse Intensity	60 e12	40 e12	120 e12
	Rep rate	20 Hz	20 Hz	5-10 Hz
	Power	1.5 MW	1.5 MW	1.5-3 MW
Linac-PIU Scenarios	Linac rep rate	20 Hz	20 Hz	10 Hz
	Linac proton rate	12 e14/s	8 e14/s	6 e14/s
	AR upgraded for acceleration?	No	Yes	Yes
	New PC ring?	No	12 GeV	16 GeV
RCS-PIU Scenarios	RCS upgrade/replacement	Upgrade	Upgrade	Replacement
	Example RCS normalized emit	40 mm mrad	24 mm mrad	80 mm mrad
	New PC ring?	8 GeV	12 GeV	16 GeV

Many paths between PIU and MCPD, but a few to examine closely:

MCPD1 – Close to Linac-PIU scenario already.

Fermilab PIU-Linac to MCPD 1

10/12/2022

PIU-to-MCPD Scenarios

		MCPD 1	MCPD 2	MCPD 3
MCPD Parameters	Energy	8 GeV	12 GeV	16 GeV
	Pulse Intensity	60 e12	40 e12	120 e12
	Rep rate	20 Hz	20 Hz	5-10 Hz
	Power	1.5 MW	1.5 MW	1.5-3 MW
Linac-PIU Scenarios	Linac rep rate	20 Hz	20 Hz	10 Hz
	Linac proton rate	12 e14/s	8 e14/s	6 e14/s
	AR upgraded for acceleration?	No	Yes	Yes
	New PC ring?	No	12 GeV	16 GeV
RCS-PIU Scenarios	RCS upgrade/replacement	Upgrade	Upgrade	Replacement
	Example RCS normalized emit	40 mm mrad	24 mm mrad	80 mm mrad
	New PC ring?	8 GeV	12 GeV	16 GeV

Many paths between PIU and MCPD, but a few to examine closely:

MCPD2 – Overdesign or upgrade of RCS, plus a new compressor ring

Fermilab PIU-RCS to MCPD 1-2

H- Injection Location

Upgrade RCS delivers higher charge or energy Build Proton Compressor

10/12/2022

Fermilab PIU-RCS to MCPD 2-3

H- Injection Location

Upgrade RCS used directly or delivers more charge. Build

10/12/2022

Proton Compressor, also accelerates.

PIU-to-MCPD Scenarios

		MCPD 1	MCPD 2	MCPD 3
MCPD Parameters	Energy	8 GeV	12 GeV	16 GeV
	Pulse Intensity	60 e12	40 e12	120 e12
	Rep rate	20 Hz	20 Hz	5-10 Hz
	Power	1.5 MW	1.5 MW	1.5-3 MW
Linac-PIU Scenarios	Linac rep rate	20 Hz	20 Hz	10 Hz
	Linac proton rate	12 e14/s	8 e14/s	6 e14/s
	AR upgraded for acceleration?	No	Yes	Yes
	New PC ring?	No	12 GeV	16 GeV
RCS-PIU Scenarios	RCS upgrade/replacement	Upgrade	Upgrade	Replacement
	Example RCS normalized emit	40 mm mrad	24 mm mrad	80 mm mrad
	New PC ring?	8 GeV	12 GeV	16 GeV

Many paths between PIU and MCPD, but a few to examine closely:

MCPD3 – At high energy, more intense pulses are possible. Will require some linac acceleration, some ring acceleration, and a pulse compressor.

🛠 Fermilab

10/12/2022

Any of these PIU scenarios can go to any of these MCPD scenarios.

Fermilab PIU-Linac to MCPD 2-3

10/12/2022

Fermilab PIU-RCS to MCPD 2-3

H- Injection Location

Build

New RCS with higher energy and charge Proton Compressor

23 Jeffrey Eldred | 2.4 MW Upgrade with RCS

PIU-to-MCPD Scenarios

		MCPD 1	MCPD 2	MCPD 3
MCPD Parameters	Energy	8 GeV	12 GeV	16 GeV
	Pulse Intensity	60 e12	40 e12	120 e12
	Rep rate	20 Hz	20 Hz	5-10 Hz
	Power	1.5 MW	1.5 MW	1.5-3 MW
Linac-PIU Scenarios	Linac rep rate	20 Hz	20 Hz	10 Hz
	Linac proton rate	12 e14/s	8 e14/s	6 e14/s
	AR upgraded for acceleration?	No	Yes	Yes
	New PC ring?	No	12 GeV	16 GeV
RCS-PIU Scenarios	RCS upgrade/replacement	Upgrade	Upgrade	Replacement
	Example RCS normalized emit	40 mm mrad	24 mm mrad	80 mm mrad
	New PC ring?	8 GeV	12 GeV	16 GeV

Assumptions:

Accumulation // Acceleration // Compression

- Assume a ring can do any two out of three, but not all three.

Space-charge during injection dQsc < 0.2, compression dQsc < 0.6.

Laser-stripping H- injection technology may be required to overcome limitations in H- injection foils (degradation and beam loss).

🛠 Fermilab

MC Proton Driver R&D Topics

1) H- Laser Stripping (especially Linac-PIU)

- SNS has demonstrated 95% efficiency over µs-scale with UV laser.
- Recommend laser demonstrator for IR wavelengths and ms-scale.

2) Muon Targetry & Cooling.

- A core design aspect, but areas for production/cooling optimization alongside proton driver optimization.

3) Pulse Compression Beam Dynamics.

- Simulations and experimental benchmarks.

4) Fast-ramping HTS Magnets (especially RCS-PIU)

Needed on muon-side, but also benefits for proton RCS design.
 aperture (5-20 cm), dipole field (1-4 T), ramping (60-600 T/s)

🛟 Fermilab

10/12/2022

5) Extreme Space-charge (especially RCS-PIU)

- Muon Collider is at Energy Frontier and Intensity Frontier.
- SC during injection and proton compression stages.

Summary & Outlook

Fermilab is planning on upgrading beam power for DUNE/LBNF, but how should we do that upgrade to prepare for "what's next?"

- Muon Collider provides a potentially compelling answer but what are we prepared to commit to in our near term planning?

Muon Collider Proton Driver scenarios 8-16 GeV seem quite achievable.

- H- Laser Stripping is a critical R&D area.
- Operational experience on proton compression schemes.
- That's proton-side perspective, muon-side R&D even more critical.

Evaluation of proton scenarios for FNAL PIU are instructive for any MCPD.

Dave Neuffer's talk tomorrow on muon-side at FNAL.

Bob Bernstein's talk tomorrow on muon CLFV points to a possible synergy

- AMF envisioned for 1-2 GeV, but 8 GeV PIU can also power it.
- AMF parameters an intermediate point between Neutrino & MC.

5 Fermilab

10/12/2022

Backup Slides

27 Jeffrey Eldred | 2.4 MW Upgrade with RCS

Rapid Cycling Synchrotron (RCS)

The 20 Hz RCS could be upgradeable to higher energy/rep.rate.

	8 GeV, 20 Hz	8 GeV, 30 Hz	$12~{\rm GeV}.$ 20 Hz	
Min. RCS Intensity for 2.4 MW	35	33.5	35	10^{12}
Available RCS Power*	0.75	1.2	1.1	MW
RF Frequency Range	50.326-52.812	50.326-52.812	50.326-52.965	MHz
Max RF Frequency Slew Rate	248	372	325	MHz/s
Total RF Voltage	1.2	1.9	2.1	MV
Required num. RF cavities (at 60kV)	20	32	35	
Max Acc. Rate	381	572	633	$\mathrm{GeV/s}$
Max Dipole Field	1.0	1.0	1.4	Т
Max Dipole Slew Rate	43	65	49	T/s
Max Quad Field	14	14	20	T/m

TABLE VII. RCS Ramp Parameters.

*concurrent with 120 GeV MI operations

28 Jeffrey Eldred | An Upgrade Path toward Multi-MW Beam Power at Fermilab

```
10/12/2022
```

H-Injection through Foil, Process

Unstripped H- ions are sent to an absorber.

Ring cheats Louiville's theorem, concentrates beam current by x10-x1000! Essential for long-baseline program and many experimental programs.

10/12/2022

🛠 Fermilab

H-Injection through Foil, Challenges

Challenges:

- Chicane magnets must be sufficiently long (weak) to avoid stripping H- beam while also inflecting the beam towards the stripping foil.

- Losses from protons scattering off injection foil, high radioactivation.
- Thin stripping foil degrades from radiation and extreme heat.
- Losses of unstriped H- particles, requires absorber or extraction line.
- Injection optics interfere with symmetric ring lattice, causing resonances.
- Beam orbit must be maintained precisely over duration of injection.

🚰 Fermilab

10/12/2022

H-Injection through Laser

Laser-stripping technology R&D underway to eliminate many of these challenges....

SNS demonstrated 95% stripping efficiency of a 1 GeV H⁻ beam with 10 µs macropulse duration using a UV laser at 1 MW peak power. However, millisecond duration with 99% efficiency is needed...

🚰 Fermilab

10/12/2022

Present scenarios must proceed with a plan for H- foil injection (with laser-stripping as a subsequent retrofit).

Example Pulse Compressor Ring Design

32 Jeffrey Eldred | 2.4 MW Upgrade with RCS

Fast-ramping HTS Magnets

YBCO-based HTS super-ferric dipole demonstrated >300 T/s. paper.

Potential for a fast-ramping compact RCS:

- Higher field strength at circumference \rightarrow higher energy beams.
- Less circumference for extraction energy \rightarrow RF power more efficient.

🚰 Fermilab

10/12/2022

- More aperture at required field strength \rightarrow greater beam intensity.

