

Cooling studies in the US

Diktys Stratakis MUON Collider Collaboration Meeting 12 October 2022

Outline

- Experimental studies on muon cooling in the US
 - Motivation
 - Concept
 - Results
 - Future studies
- Design studies on muon cooling in the US
 - Results accomplished during the MAP program
 - Future plans

Fermilab Muon g-2 Experiment

Goal

 Measure the muon anomalous magnetic moment (g-2) with 0.14 ppm uncertainty - a fourfold improvement of the BNL measurement (0.54 ppm)

Approach

- Circulate polarized muons in a uniform magnetic field and measure the precession frequency
- 3.1 GeV/c muons to simplify Thomas-BMT 0 equation: $\vec{\omega}_a = \frac{e}{mc} \left[a_{\mu} \vec{B} \left(a_{\mu} \vec{B} \left(a_{\mu} \vec{B} + \vec{E} \right) \vec{\beta} \times \vec{E} \right]$

Requirement

 Requires delivery of 1.4x10¹⁴ muons in the ring which is x21 the statistics of the BNL experiment

Muon Campus layout

 Since 2018, Muon Campus has delivered ~ 19x BNLs and is expected to deliver the desired goal by the end of FY23

Motivation for beam cooling

The beam delivered to the storage ring of the Muon g-2
 Experiment has a rms momentum spread of ~1.3%

 The ring accepts muons within ~0.1% of the magic momentum (~3.1 GeV/c) only. Nearly 90% of the incoming

beam is lost.

- Laboratory Directed Research and Development
- First separate particles by momentum by guiding them into a dispersive area
- Then, pass the beam through a wedge absorber
- With a properly designed wedge, high-energy muons will lose more energy than low-energy ones. As a result, the overall energy spread of the beam is reduced
- Through Fermilab's LDRD program, in 2017, we have been awarded a grant to design, install and test a wedge in the Muon Campus

Simulation of the concept

 Simulations of the wedge concept along the Fermilab Muon Campus revealed that a wedge can increase the number of stored muons for the Muon g-2 Experiment

Choice of material

 A figure of merit for each material can be obtained by taking the product of it's energy-loss and radiation length terms

Boron Carbide (B₄C)

Quantity	Value	Units
<z a=""></z>		
Specific gravity		
Mean excitation energy		
Minimum ionization	4.157	MeV cm ⁻¹
Nuclear collision length	23.12	cm
Nuclear interaction length	33.27	cm
Pion collision length	33.92	cm
Pion interaction length	46.04	cm
Radiation length	19.89	cm
Critical energy	88.08	MeV (for e^+)
Molière radius	4.659	cm
Plasma energy $\hbar\omega_p$		
Muon critical energy		

Fabrication and installation progress (1)

10/12/22

Fabrication and installation progress (2)

Simulated trajectories

Beam wedge covers roughly half of the beam

The majority of beam-material interaction happens near the

wedge apex

Parameter	Value at wedge
Dispersion, D_{x}	0.85 m
Beta, β_x	2.3 m
Beta, $eta_{\mathcal{Y}}$	3.8 m
Emittance rms, ε	12.0 μm
Sigma, σ_{χ}	10.0 mm

Measuring Technique

- We measure beam intensity at two locations: (1) upstream of ring injection, and (2) inside the ring after thousand of turns
- Calorimeters measure only muons that fit within the ring's momentum acceptance. As a result this value provides a key parameter that governs the wedge performance.

Test with a Polyethylene wedge

A polyethylene wedge provided a 5% gain in stored muons

Test with a Boron Carbide wedge

A boron carbide wedge provided a 7% gain in stored muons

Conclusion

- The LDRD run for 3 years and finished in 2020
- Similar to MICE, demonstrated the emittance-exchange process i.e longitudinal cooling
- The novelty of our work is that it demonstrated direct applicability to an operational facility: Muon g-2 Experiment
- Showed an increase in storable muons by ~7%
- Showed numerically the potential to increase storable muons by 20% or more
 - Required significant change on optics/power supplies
 - Not possible given the time constraints of the experiment

Muon g-2 cooling: Thanks to several students!

Nick Amato (2019)
Master's Thesis, NIU
(Syphers)
Title: Improved momentum spread for precision experiments using wedges

Lauren Carver (2019) Fermilab Intern Title: Modeling a wedge absorber for the g-2 Experiment

Jerzy Manczak (2018) Fermilab Intern Title: Modeling a wedge absorber for the Mu2e Experiment

Joe Bradley (2017)
Fermilab Intern
Title: Material &
geometry study of a
wedge absorber for the
g-2 Experiment

Grace Roberts (2020)
Fermilab Intern
Title: Optimizing injection
for a wedge based Muon g2 Experiment

Ben Simons(2020) **NIU** grad. student
Title: Tuning beam optics
for the Muon Campus

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

Nuclear Inst. and Methods in Physics Research, A 962 (2020) 163704

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Realistic modeling of a particle—matter-interaction system for controlling the momentum spread of muon beams

Laure Carver*, Diktys Stratakis b.*

Laure Carver*, Diktys Stratakis b.*

Coding of William and May, Williamburg 10, 22187, 105.

A parametric analysis for maximizing beam quality of muon-based storage ring experiments

Grace Roberts *, Diktys Stratakis b.**

Purdue University, Department of Physics, West Lefayette, IN 47906, USA Fermi National Accelerator Laboratory, Batavia II. 60510, USA

Future work: EDM experiment

- There is considerable interest for an Electron Dipole Measurement (EDM) experiment at the Fermilab muon g-2 ring
- It will require the collection and transport of 300 MeV/c muons along the Muon Campus
- Can open a path for wedge testing in a parameter regime that is closer to the actual cooling needed for a Muon Collider
- Simulations underway to estimate performance

10/12/22

Future work: Fermilab Mu2e-II Experiment

March 17, 2022

Mu2e-II: Muon to electron conversion with PIP-II Contributed paper for Snowmass

Transport Solenoid

 Goal is to increase muons in the 0-30 MeV/c range

 Concept works; its getting harder due to increased scattering

10/12/22

Design: Rectilinear channel concept

- Through the MAP program, we delivered 6D cooling designs in place with realistic assumptions
 - Matched the desired performance goal
 - Conservative limits on RF and magnet technology
 - Improvements expected with recent technology advancements

Performance

- Complete end-to-end simulation from the target (point 1)
- 6D emittance reduction by five orders of magnitude (point 5)
- Achieved emittances and transmissions specified by MAP
- Overall distance ~ 900 m

Fermilab

Ionization cooling design for a MC - 6D cooling

- Multiple stages that vary in magnetic strength & rf requirements
 - 8 stages: B-Field and rf gradient progressively larger from stage to stage
 - The cells are becoming more challenging in terns of engineering towards

Comments on performance

- Early stages had LH while later stages had LiH absorbers
- The starting distribution was the one delivered after phaserotation in the front-end section
- The cooling "performance" was evaluated with the program ecalc9f based on "agreed" momentum cuts and acceptances

Momentum cut we used to evaluate transmission was

between 150 and 350 MeV/c

Stage	$\varepsilon_T^{\mathrm{sim}}$ [mm]	$arepsilon_L^{ ext{sim}}$ [mm]	$P_z^{\rm sim}$ [MeV/c]	T [%]
Begin	17.00	46.00	255	
A1	6.28	14.48	238	70.6
A2	3.40	4.64	229	87.5
A3	2.07	2.60	220	88.8
A4	1.48	2.35	215	94.6
Begin	5.10	10.04	209	
B1	3.76	7.76	210	89.7
B2	2.40	6.10	208	90.6
B3	1.55	4.28	207	89.2
B4	1.10	3.40	207	89.7
B5	0.68	2.97	204	87.5
B6	0.50	2.16	202	88.0
B7	0.38	1.93	200	89.6
B8	0.28	1.57	200	89.0

Cooling: Where are we now

- Strong participation of the MC community at Snowmass
- Best case scenario: Muon Collider activities could resume in the US after a positive outcome of P5 next year
- Under that scenario, for Summer 2023
 - Expect to have 1-2 interns to work on Muon cooling designs
- For FY24
 - Submit a proposal through Fermilab's LDRD program
 - PhD student support through the Fermilab-Joint University program?
 - DOE funding?

Topics of interest

- Recall that cooling has significant impact on PD requirements
- Past designs were conservative in magnet and rf technology
 - Critical to understand the impact of a higher solenoidal and rf fields on the overall design. Will this improve performance?
- What are the limits of 6D cooling
 - Don Summers showed that with higher fields and more stages we can cool more with a rectilinear channel. Is this beneficial?
- Study critical processes such beam loading or beam-absorber interactions
 - What modifications are needed if this becomes a problem?
- Final cooling alternatives: Benefits of Neuffer's wedge cooler?
- Explore cooling demonstrator options in the US

