

Cooling windows/absorber

Jose A. Ferreira Somoza TE-VSC (CERN)

Muon Collider Collaboration Meeting - October 2022

-1- :-

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

- - - -

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

Introduction

Fully driven by muon lifetime, otherwise would be easy

Final Cooling

□ Absorber → H₂ best candidate □ For liquid/gas absorber → Vacuum windows are required □ Low energy → Thin windows

[1]

TABLE II.	Parameters of the high-field low-energy cooling channel.	
		-

Stage [N]	P [MeV/c]	Energy spread σ_E [MeV]	LH ₂ thickness [cm]	Drift length [m]	rf length [m]	rf frequency [MHz]	Field flip
1	135.0	2.29	65	0.434	2.25	325	Yes
2	130.0	2.48	60	0.459	2.25	250	Yes
3	129.0	2.78	60	0.450	2.5	220	No
4	129.0	3.10	59	0.458	2.5	201	No
5	122.0	3.60	57	1.629	5.0	201	Yes
6	124.0	4.90	53	2.22	4.5	180	No
7	116.0	3.40	42	2.21	3.25	150	No
8	111.0	3.90	40	2.0	3.5	150	No
9	106.0	3.50	40	3.13	5.0	125	Yes
10	98.0	3.07	35	3.13	5.0	120	No
11	89.4	3.11	20	3.12	5.0	110	No
12	87.9	2.76	20	3.1	8.0	100	No
13	85.9	2.67	20	3.0	7.5	100	Yes
14	79.7	3.08	15	2.7	7.0	70	No
15	71.1	4.0	15	2.6	6.0	50	No
16	71.0	3.80	13	2.5	6.0	20	No
17	70.0	3.80	10			20	

Initial Momentum (MeV)	Initial kinetic energy (MeV)	Final kinetic energy MeV
135	65.8	39.3
130	61.9	36.7
129	61.1	35.7
129	61.1	36.2
122	55.7	30.1
124	57.3	34.2
116	51.2	32.1
111	47.6	28.5
106	44.0	23.5
98	38.5	18.6
89.4	32.7	21.1
87.9	31.8	19.8
85.9	30.5	18.0
79.7	26.7	16.6
71.1	21.7	8.8
71	21.6	11.0
70		47.0

Parameters:

- > 20 to 5 MeV cooling
- ➢ 4e12 muons/pulse
- ➤ 5 Hz repetition rate
- $\succ \sigma_{\text{RMS}}=0.6$ mm

-1- :-

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

Thin windows

- Possible materials:
 Be, Si₃N₄, C, SiC, etc.
- Limit beam perturbation <15μm (approx. <1% of power absorbed in the window for 3keV/μm)
- Thin window \rightarrow Small window \rightarrow 10× $\sigma_{\rm RMS}$

$$\left\langle -\frac{dE}{dx}\right\rangle_{\text{electronic}} = K\frac{Z}{A}\frac{1}{\beta^2} \left[\frac{1}{2}\ln\frac{2m_ec^2\beta^2\gamma^2 Q_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} + \frac{1}{8}\frac{Q_{\text{max}}^2}{\left(\gamma Mc^2\right)^2} \right] + \Delta \left| \frac{dE}{dx} \right|$$

		5 MeV	20 MeV
De	Stopping power [MeV×cm²/g]	11.2	4.0
Бе	Linear stopping power [keV/µm]	2.1	0.7
C: N	Stopping power [MeV×cm²/g]	11.2	4.0
51 ₃ N ₄	Linear stopping power [keV/µm]	3.1	1.1
С	Stopping power [MeV×cm²/g]	12.2	4.3
	Linear stopping power [keV/µm]	2.7	1.0
SiC	Stopping power [MeV×cm²/g]	11.1	4.0
	Linear stopping power [keV/µm]	3.5	1.3

Thin windows: Be

□ Well known material
 □ As thin as 8 µm in commercial x-ray windows[3]
 □ Aperture 7 mm
 □ ΔP > 1 bar

Figure 1 Typical Assembly of Beryllium Window

Figure 2 Conflat Flange Geometry

Table 1 Dimensions of Conflat Flange Options (Refer to Figure 2 above)								
CF	Foil Thickness (µm)	Foil Diameter (mm) - A	Through Hole Diameter (mm) - B	CF Outer Diameter (mm) - C	CF Thickness (mm) - D	Window Height (mm) - E	Coating	Part ID
1-1/3"	8.0	9.2	7.0	33.8	7.2	0.5	DuraCoat Plus	DBM-08-9.2-CF1.3-P
OD	25.0	16.0	13.0	33.8	7.2	0.5	DuraCoat	DBM-25-16.0-CF1.3
2-1/8"	8.0	9.2	7.0	53.6	11.9	6.5	DuraCoat Plus	DBM-08-9.2-CF2.1-P
OD	25.0	16.0	1 <mark>3.</mark> 0	53.6	11.9	6.5	DuraCoat	DBM-25-16.0-CF2.1

Thin windows: Si_3N_4

- □ Commercially available: Xray windows i.e. [4]
- Thickness <1 µm
- □ It can work at cryogenic temperature [11]
- □ Bulk material has excellent mechanical properties [5]

Ferreir

1 µm 6×6mm window \rightarrow ≈5 bar pressure

Thin windows: C

□ Thickness <1 µm</p> □ Different options: Graphenic carbon [12] or diamond [13]

Fig. 4. Measured thickness dependent burst strength of fabricated GC transmission windows with a diameter of 7 mm.

Fig. 2. (a) sketches the fabrication process of the transmission window. (b) shows a top view image of a fabricated GC window. (c) depicts a TO8 housing with a GC window glued into the top of the housing

Fig. 4. SEM picture of the diamond film 345[#].

-1- :-

Thin windows: SiC

 $\Box \, \mbox{Thickness}$ <1 $\mu \mbox{m}$

- Bulk material has excellent mechanical properties
- □No many commercial suppliers [6]

Thin windows

- > Approx 1 mm stops the beam completely at 5MeV (1.3 mm for Be)
- Several candidates for thin windows
- Better characterization and evaluation required but first numbers look promising
- Measure mechanical properties (cryogenic to high temperature) for precise thermomechanical simulations. Bulge test [14] with interferometry?
- Pressure in the absorber is critical for the window definition

Si $_{3}N_{4}$ Ø 7 mm 1 μ m at 5 MeV – 0.6 mm gaussian beam Only room temperature ambient radiation

Thin windows

at in a car

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

Adsorber

$$\epsilon_{min,N} \propto \frac{E}{BL_R(dE/ds)}$$
 [1]

H₂ best absorber material What is the required density? Which length can we expect?

13/10/2022 Muon Collider Collaboration Meeting - J.A. Ferreira

Liquid H2 power deposition

Absorber length

H ₂ Absorber	Length	Max P (bar)	Max T (K)	P assuming power deposited in 3×σ _{RMS} (bar)	K assuming power deposited in 3×σ _{RMS} (K)
RT@1bar	124 m	1.3	373	1.04	303
RT@4bar	31 m	5.2	373	4.18	303
20.3K@1bar vapor	8 m	7.5	140	1.8	34
26.1K@4bar vapor	2.1 m	29.2	143	7	40
20.3K@1bar liquid	15 cm	833	128	125	35

Is the H_2 absorber compatible with a thin window? Is there any concept to make both compatible?

Outline

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

Other concepts? Solid?

- Solid hydrogen can be produced in small pellets
- □ It is possible to produce 6 mm diameter >10 mm long pellets [16][17]
- □ Very likely there is a limit to the length of the solid plug produced by condensation → Several plugs in the same tube?
- □ It will allow to decouple the window from the absorber (vacuum space)

FIG. 1. Principles of operation for a "pipe-gun" pellet injector: (1) introduction of room-temperature gas (pure H_2 , D_2 , T_2 , or a mixture) initiates the solidification process, (2) freezing process continues, filling in the center of the pellet within a few minutes, (3) residual gas is pumped away after sufficient freezing time, and (4) high-pressure gas is admitted at the breech to accelerate the frozen pellet in the tube.

Other concepts? Solid?

- Power deposition → H₂ will be melted and heat up(>100s bars)
- Will part of this fluid be expelled into the vacuum volume?
- Is there enough time between pulses to recondense the gas produced during the shot?
- Will the shape be preserved?

FIGURE 43. Parahydrogen, temperature-entropy diagram (10 to 25 K).

Other concepts? Solid?

Other concepts?

- > How to implement inside a small magnet bore?
- > Is it possible to take the windows out of the solenoid?
- \succ At 14.5K vapor pressure 100 mbar \rightarrow Lower $\triangle P$
- > Liquid curtain?
- > Shutter to expose the liquid for a fraction of time?
- Keep bubble in front of window (extra heat load to absorber)?
- Reproducibility of absorber length?

- 1 :-

- Introduction: Final cooling
- Thin windows
- Absorber length and pressure
- Other concepts
- Summary

MInternational UON Collider Collaboration

Summary

- Several window candidates for final cooling.
 - □ Systematic study of the different candidates
 - Measurement of mechanical properties at working temperature
 - Thermomechanical simulations
 - □ Validation in proton facilities with equivalent power deposition
- \Box High density absorber required to have a short solenoid, but power deposition \rightarrow High pressure. Compatible with thin window?
- ❑ Shock wave and phase change after power deposition in liquid hydrogen → Very challenging CFD problem out of reach of commercial codes
- Possible mitigations?:
 - □ Repetition rate
 - □ Lower density (long solenoid)
 - □ Higher energy
 - \square Decouple window and absorber \rightarrow new concept

- at in the

References

- [1] H. Kamal Sayed, R.B. Palmer, and D. Neuffer, Phys. Rev. ST Accel. Beams 18, 091001 (2015).
- [2] D.E. Groom and S.R. Klein, Eur. Phys. J. C 15, 163 (2000).
- [3] DuraBeryllium[®] Windows in Conflat Flanges
- [4] <u>Silson Differential Pressure Windows</u>
- [5] R.L. Edwards, G. Coles, and W.N. Sharpe, Experimental Mechanics 44, 49 (2004).
- [6] <u>Silson Silicon Carbide</u>
- [7] <u>AtomicNuclear Properties (lbl.gov)</u>
- [8] <u>Isochoric Properties for Hydrogen (nist.gov)</u>
- [9] D. Schulte, "Muon Collider", Muon Collider Collaboration Meeting, October 2022 [10] B.M. Stechauner, Final cooling scheme for muon colliders: a door opener for future discovery machines, TU Vienna, 2021.
- [11] P.T. Törmä, J. Kostamo, H. Sipilä, M. Mattila, P. Kostamo, E. Kostamo, H. Lipsanen, C. Laubis, F. Scholze, N. Nelms, B. Shortt, and M. Bavdaz, IEEE Transactions on Nuclear Science 61, 695 (2014).
- [12] S. Huebner, N. Miyakawa, S. Kapser, A. Pahlke, and F. Kreupl, IEEE Transactions on Nuclear Science 62, 588 (2015).
- [13] X. Ying, J. Luo, P. Wang, M. Cui, Y. Zhao, G. Li, and P. Zhu, Diamond and Related Materials 12, 719 (2003).
- [14] B. Merle, Mechanical Properties of Thin Films Studied by Bulge Testing (FAU University Press, Erlangen, 2013)
- [15] J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, and E.W. Lemmon, Journal of Physical and Chemical Reference Data **38**, 721 (2009).
- [16] J. Lafferranderie, G. Claudet, F. Disdier, P. Kupschus, and K. Sonnenberg, in *Fusion Technology 1986* (Pergamon, 1986), pp. 1367–1373.
- [17] S.K. Combs, Rev. Sci. Instrum. 64, 1679 (1993).

THANK YOU FOR YOUR ATTENTION!