Detector Design using BIB simulation data

October 12th, 2022

N. Bartosik (a) on behalf of the Muon Collider Physics and Detector + MDI groups

(a) INFN Torino *(Italy)*

General principles and technical implementation

Detector design: main components

- **Muon Collider detector follows the typical layout of general-purpose collider experiments:**
	- **low-material-budget tracking detector (TRK)**
		- → Vertex Detector (VXD) + Inner Tracker + Outer Tracker ●
	- **electromagnetic calorimeter (ECAL)**
	- hadronic calorimeter (HCAL) \bullet
	- **superconducting solenoid**
	- **muon spectrometer**
- **Less typical part of the experiment:**
	- **large tungsten nozzles (MDI)** → machine-detector interface \rightarrow essential for absorbing beam-induced background (BIB) induced by muon decays inside the beam
- **Changes to the MDI design will impact the detector performance**
- $→$ **MDI and detector have to be designed together**
- Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data 2

• **Vertex Detector:** impact-parameter resolution for tracks • **Inner/Outer Tracker:** track p_T + angle resolution • **ECAL/HCAL:** energy + shower-shape resolution • **muon spectrometer:** muon p_T resolution • **magnet:** high-p_T resolution + low-p_T acceptance for tracks

Detector design: performance metrics

Each subdetector has its own key performance metrics → can be estimated "on paper"

Performance estimation becomes more complex at the level of actual reconstructed particles:

- **• detection thresholds, noise, pile-up, particle misidentifications, etc. ↳ interplay of different subdetectors + variations in response to different particle types**
- **• contribution from BIB particles can degrade performance of the detector tremendously**

Reliable design of a detector requires detailed simulation of all the technical aspects **including all relevant effects from BIB particles** $→$ must be as realistic as reasonably possible

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data Nazar Bartosik Nazar Bartosik Nazar B

BIB effects: main aspects

We know several key features of BIB particles that are relevant for detector design

- **1. Predominantly very soft particles** (~10 MeV) except for neutrons fairly uniform spatial distribution \rightarrow no isolated signal-like energy deposits \rightarrow different kind of pile-up from what we are used to at the LHC
- **2. Significant spread in time** (few ns + long tails up to a few µs) $\mu^+\mu^-$ collision time spread: 30ps at \sqrt{s} = 1.5 TeV | ≤20ps at \sqrt{s} = 3 TeV \rightarrow can be a strong handle on BIB with precise-enough timing
- **3. Strongly displaced origin along the beam** crossing detector surface at a shallow angle \rightarrow affects charge distribution + time of flight
- **4. Very high flux of photons + neutrons** significant radiation damage to the detector

Any of these features can change significantly during optimisation of the MDI

Nazar Bartosik Nazar Bartosik Kuri data di Petector design using BIB simulation data 1988 (1988)

-
-
-

What does it mean to optimise the MDI?

It's impossible to get rid of BIB particles completely within the limited space available for MDI

Geometry and composition of the MDI can be tuned for suppressing some parts of the BIB spectrum, but in most cases it will enhance some other parts of the spectrum

→ optimal MDI is a compromise between "critical" and "tolerable" BIB contributions

Which part of the spectrum should we focus on?

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data Theorem Nazar Bartosik S

BIB constribution: subdetector-dependent

Different subdetectors are mostly affected by different types of particles

- **electrons**
	- **1. stay within the Tracking Detector** $low-p_T$ loopers \rightarrow multiple hits/particle
- **2. primarily absorbed in ECAL** adding background energy deposits **photons**
- **3. neutrons mostly depositing energy to HCAL + radiation damage across the whole detector volume** ϵ especially thermal neutrons \rightarrow multiple scatterings/particle **neutrons**

Signals from electrons can be suppressed with precise timing detectors

← detected time corrected for the time-of-flight from the centre assuming photon's path

Nazar Bartosik (Geografia data betector design using BIB simulation data and \sim 6

BIB simulation: MDI vs Detector

- 1. **production of BIB particles in the accelerator lattice + interaction with the MDI** (all passive material)
	- \rightarrow using FLUKA + LineBuilder
- 2. **interaction of BIB particles with the detector + conversion to realistic signals** (passive + active materials)
	- \rightarrow using GEANT4 within the ILCS of t framework

We are using two separate and independent software packages for simulating BIB effects:

 \rightarrow FLUKA \rightarrow GEANT4 \rightarrow performance plots \rightarrow adjust MDI + detector

The most straighforward approach is to fully separate the two stages stopping particles at the outer MDI surface and passing them to GEANT4

BIB particles produced by FLUKA → ~108 particles/BX

↳ simulating all of them in GEANT4 is impractical

Only a small fraction of these particles would contribute to actual reconstructed events

- **↳** particle arriving within a specific readout time interval
	- + having sufficient energy to produce a hit **FLUKA**

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data

We can define two main metrics relevant for detector-performance optimisation

Using hits in the Vertex Detector (Barrel) as an example: 1 particle = 1 hit \rightarrow we can count # of particles / cm²

Radiation damage to the sensitive materials of the detector i.e. TID + 1 MeV n. eq. fluence delivered to each element

- **Particles arriving to the detector at any time are relevant** full range of time must be integrated
- **Backscaterring of BIB particles from the detector must be taken into account**
- **Small-scale details of the geometry are less relevant**
	- simplified detector geometry is implemented directly in FLUKA (dimensions + average material composition)
- **Realistic radiation maps of the detector can be obtained in the fastest way possible**

 Relevant for determining the materials and technologies to be used in different regions of the detector

Nazar Bartosik Nazar Bartosik Reserves Nazar Bartosik Reserves Detector design using BIB simulation data Nazar R

We can define two main metrics relevant for detector-performance optimisation

Using hits in the Vertex Detector (Barrel) as an example: 1 particle = 1 hit \rightarrow we can count # of particles / cm²

Detector occupancy – determines the chance of a pile-up signal in the same readout channel: typically should be $\leq 1\%$

 \rightarrow all BIB particles arriving even before the BX must be included up to the end of the readout time window

Dead time can be much larger than the time resolution

Relevant for determining the necessary spatial granularity

 \mapsto balancing physics performance vs cost vs data rates

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data 1999 | 9

We can define two main metrics relevant for detector-performance optimisation

Using hits in the Vertex Detector (Barrel) as an example: 1 particle = 1 hit \rightarrow we can count # of particles / cm²

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data 10

Simulation workflow: current approach

BIB simulation in FLUKA has two setups now:

1 MDI + approximate detector geometry

particles collected at several predefined surfaces

Particles collected at each surface and saved to file

 \rightarrow fast analysis to see particle densities at each surface

 \rightarrow optimising detector geometry and parameters + fine-tuning reconstruction algorithms

All relevant information stored for each BIB particle: pdgId, energy, momentum, position, absolute time \rightarrow allows flexible filtering of BIB particles that are passed to the MDI analysis or to GEANT4 simulation

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data

Approximate detector layout is known

 \rightarrow iterating through MDI designs to optimise the metrics

2 Just the MDI + detector outer box

particles stopped at the border and saved to file

Particles passed to GEANT4 for detector simulation

Example case: Vertex Detector

Most of BIB hits in the Vertex Detector are caused by very soft looping electrons (multiple hits/particle)

Increasing magnetic field $(3.57 T \rightarrow 5.0 T)$ **showed significant reduction in hit multiplicity**

> **← magnetic field modified only in GEANT4 detector model** but not in FLUKA \rightarrow path of electrons within MDI is wrong

Nazar Bartosik Nazar Bartosik Detector design using BIB simulation data 12

With the new approach occupancy in the Vertex Detector can be evaluated for several B-field values directly in FLUKA choice of the optimal MDI geometry + B-field can be much faster \rightarrow tuning of hit-filtering algorithms in GEANT4

Nazar Bartosik Detector design using BIB simulation data

Simulation of BIB particles involves two independent packages: FLUKA and GEANT4

Part of detector-specific simulations are being implemented on the FLUKA side for faster MDI-optimisation turnaround

-
-
- **Fine-tuning of the detector layout, response parametes and algorithm implementations in GEANT4**
	-

for detailed simulation of the actual physics performance

Plenty of detector-specific algorithms implemented in ILCSoft for each subdetector covered by next talks in the *Physics and Detectors* session

