# **Tracks Reconstruction Performance**





UON Collider Collaboration





UNIVERSITY<sup>OF</sup> BIRMINGHAM

#### MCC Meeting

# **Our Onion Detector**

#### hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm<sup>2</sup> cell size:
- 7.5 λ<sub>1</sub>.

#### electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors:
- 5x5 mm<sup>2</sup> cell granularity;
- $\rightarrow$  22 X<sub>0</sub> + 1 λ<sub>1</sub>.

#### muon detectors

- ♦ 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm<sup>2</sup> cell size.



heavily based on <u>CLIC</u> detector

#### tracking system

- Vertex Detector:
  - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
  - 25x25 µm<sup>2</sup> pixel Si sensors.
- Inner Tracker:
  - 3 barrel layers and 7+7 endcap disks;
  - 50 µm x 1 mm macropixel Si sensors.
- Outer Tracker:
  - 3 barrel layers and 4+4 endcap disks;
  - 50 µm x 10 mm microstrip Si sensors.

#### shielding nozzles

Tungsten cones + borated polyethylene cladding.

- BIB = muon beam decay and strike the detector
- Several main mitigation
  - 10° tungsten nozzle to shield from beam decay products
  - Precision timing information from detectors





#### **The Scale of BIB**



|           | ITk Hit Density<br>[mm <sup>-2</sup> ] | MCC Equiv. Hit Density<br>[mm <sup>-2</sup> ] |  |
|-----------|----------------------------------------|-----------------------------------------------|--|
| Pix Lay 0 | 0.643                                  | 3.68                                          |  |
| Pix Lay 1 | 0.022                                  | 0.51                                          |  |
| Str Lay 1 | 0.003                                  | 0.03                                          |  |

ITk Pixels TDR, ITk Strips TDR





Dose comparable to full HL-LHC luminosity.

source



# **Pixel Size and Timing**



# $\mathbf{A}_{2}^{\mathsf{A}} = \mathbf{A}_{1} = \mathbf{A}_{2} \mathsf{P}_{\mathsf{S}}^{\mathsf{A}} = \mathbf{A}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T}} \mathsf{P}_{\mathsf{S}}^{\mathsf{A}} = \mathbf{A}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T}} \mathsf{P}_{\mathsf{S}}^{\mathsf{A}} = \mathbf{A}_{\mathsf{T}} \mathsf{P}_{\mathsf{T}}^{\mathsf{A}} = \mathbf{A}_{\mathsf{T}} \mathsf{P}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T}} \mathsf{P}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T}} = \mathbf{A}_{\mathsf{T$

#### • Goal is <1 % occupancy per pixel.

- Pixel size optimized to achieve this
- Precision timing also plays important role
  - Needed for on-detector filtering (for readout)
- Need to be careful about slow particles
- Resolutions are approximated in simulation using Gaussian smearing

#### **Current Assumptions**

|     | Cell Size     | Sensor<br>Thickness | Time<br>Resolution | Spatial<br>Resolution |
|-----|---------------|---------------------|--------------------|-----------------------|
| VXD | 25 µm x 25 µm | 50 µm               | 30 ps              | 5 µm x 5 µm           |
| IT  | 50 µm x 1 mm  | 100 µm              | 60 ps              | 7 µm x 90 µm          |
| ОТ  | 50 µm x 10 mm | 100 µm              | 60 ps              | 7 µm x 90 µm          |

No difference between barrel and endcap.

#### Details

Work In Progress: Currently not part of common workflow

Details

• Provides a more accurate description of hit clusters



# **WIP Realistic Digitization**

#### Two models for vertex modules

- Trivial (collect charge in pixel)
- RD53A (complete simulation, ref)
- Hoshen-Kopelman for clustering
  - Eval alternatives as future development

#### • Performance tested with full BIB

- Trivial: 100 s / evt
- RD53A: 5000 s / evt







# **Track Reconstruction Algo #1**



#### Algorithm + code inherited from CLIC software.

aka optimized for clean e<sup>+</sup>e<sup>-</sup> environment



**Details** 

# **Tracking Performance #1**

- Employ hit multiplicity reduction strategies
  - Region of Interest seeded tracking
  - Directional information from double layers
- Require tight filtering for practical tracking



Good track reconstruction once algorithm completes







# **Flavour Tagging**

- Secondary vertex reconstruction possible with BIB
  - Caveat: using a very loose hit filter
- Work ongoing on multivariate tagger
- Double layer filtering → possible bias





## **A Common Tracking Software**

- ACTS is a standalone library for tracking algorithms
- Dedicated team working on advancing tracking algorithms
  - Tracking is hard!
- Allows us explore alternate algorithms
  - Triplet-based seeding optimized for high multiplicity environments

Kalman Filter

0.5 ms / track

100 ms / track

**Execution Time** 

• Ongoing work to incorporate ML-based algorithms

#### • Code optimization come for free

- Good software is even harder than tracking!
- Also explores modern computing architectures (ie: GPU's)

Fit Library

ACTS

iLCsoft



https://github.com/acts-project/acts

# **Triplet Seeded CKF**



#### Similar algorithm used by ATLAS.

aka optimized for high hit multiplicity

### **ACTS Track Finding**

- Seeded CKF runs in ~4 min / event.
- Parameters need to be optimized.
  - Seeding: very narrow collision region
  - CKF: No branching allowed

**MCC Meeting** 

15





10

15

Hits on Track

0.10

0.05

0.00

0

5

25

Simulation

20

**Details** 

#### **Electrons and Photons**



- Electrons reconstructed as photons.
- Sculpting from fake reduction cuts



Electron Reconstruction w/o BIB



# **Rejecting Fakes**

Details

- 100k fake tracks / event
- reduce to < 1 fake / event</li>
- Still missing a few handles
  - $\chi^2$ , N<sub>holes</sub>, timing
- Implemented as an (unreleased) processor



#### Efficiencies



- Details
- TrackFilter optimized using evolutionary algorithms



• Studied a few fixed efficiency working points



#### **Track Reconstruction Flow**



# **TrackPerf: Package for Common Tracking Plots**

#### • Common way to compare the different tracking approaches

- Started a new package TrackPerf (unreleased)
- Functionality
  - Input: EVENT::Track collection
  - Output: all the histogram you would want
    - Parameters of truth particles matched/not-matched/all
    - Parameters of tracks matched/not-matched/all
    - Resolution plots of all parameters
  - Configurable selection on truth particles
    - Default: charged, decay in tracker, left tracker
    - Option to filter for particles from b-meson decay (TODO)
  - ROOT Ttree for custom studies (TODO)





#### Missing plotting scripts!

November 18, 2021

# Conclusions

- Tracking is most advanced part of object reconstruction
- ACTS allows practical track reconstruction with full BIB in
  - Demonstrates we can meet the challenge with *current computing resources*
- Plenty of room for improvement (fake rejection, optimization)
  - Sharing of common code, samples and reference results important!

#### Next big step:

- Reduction of BIB hits via realistic digitization
- Understand impact on object reconstruction and identification

#### BACKUP

### **Truth Tracking**

#### **Pattern Recognition**

- Use hits associated to MC particle (100% efficiency)
- Same code for Marlin and ACTS

#### **Track Fit**



*i*LCsoft

• Kalman Filter, but ACTS vs Marlin implementation



Same inputs, same algorithm, but different programmer.

100 ms / evt

# **Evolutionary Algorithm**

### Optimization with evolutionary algorithm

Chatain et al., *Evolutionary Algorithms for Tracking Algorithm Parameter Optimization* for EPJ Web of Conferences, 23 August 2021

