

Muon detectors performance

Chiara Aimè on behalf of the Physics and Detector working group

UON Collider Collaboration

First Annual Meeting CERN 11-14 Oct 2022

- 1. Hints from theory
- 2. Detector
 - 1. now
 - 2. ...and then?
- 3. A big issue: Beam-Induced Background
- 4. Overview of reconstruction techniques
- 5. Very preliminary results without BIB
- 6. Dealing with BIB: two possible ways
 - 1. Results with standalone muon reconstruction
 - 2. Results with ACTS and Pandora
- 7. Conclusions and perspectives

Physics with muons

Goal:

- Higgs' precision physics
- dark matter searches

Maximilian Ruhdorfer The physics case of a very forward muon detector

1. Hints from theory

Muon Collider detector

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

	1 1 1	Subsystem	Region	R dimensions [cm]	Z dimensions [cm]	Material
	hadronic	Vertex Detector	Barrel	3.0 - 10.4	65.0	Si
	Calonmeter		Endcap	2.5-11.2	8.0-28.2	Si
	electromagnetic	Inner Tracker	Barrel	12.7 - 55.4	48.2 - 69.2	Si
	calorimeter		Endcap	40.5-55.5	52.4 - 219.0	Si
		Outer Tracker	Barrel	81.9 - 148.6	124.9	Si
			Endcap	61.8 - 143.0	131.0 - 219.0	Si
	- tracking system	ECAL	Barrel	150.0 - 170.2	221.0	W + Si
			Endcap	31.0 - 170.0	230.7 - 250.9	W + Si
	shielding nozzle	HCAL	Barrel	174.0 - 333.0	221.0	Fe + PS
	superconductive		Endcap	307.0 - 324.6	235.4 - 412.9	Fe + PS
	solenoid (3.57 1	Solenoid	Barrel	348.3 - 429.0	412.9	Al
	muon system	Muon Detector	Barrel	446.1 - 645.0	417.9	Fe + RPC
	barrel		Endcap	57.5 - 645.0	417.9 - 563.8	Fe + RPC
	muon system					
	endcap					

Muon system

Current design

Iron yoke plates instrumented with:

- $_{\odot}\,$ 7 layers of detectors in the barrel
- o 6 layers in both endcaps

Detector technology: Glass Resistive Plate Chamber (GRPC)

Detector cells: 30x30 mm²

Magnetic field: 1.34 T in barrel
0.01 T in endcaps

Geometry based on CLIC detector arXiv:1202.5940 Physics and Detectors at CLIC: CLIC CDR

Technologies for the muon system

Classical gaseous detector

- Double gap Glass RPC
- Double gap HPL RPC

Classical Micro Pattern Gaseous Detectors (MPGD) o Triple GEM

New generation MPGD

PicoSec

son muon detectors

Beam-induced background

arXiv:2203.07224v1 Promising Technologies and R&D Directions for the Future Muon Collider Detectors

100 1-MeV-neq fluence $\sqrt{s} = 1.5 \text{ TeV}$ ring circumference = 2.5 kminjection frequency = 5 Hznormalised to one year 0.1 0.01 0.001 0.0001 > BACK Francesco Collamati Machineinduced background studies for 1e-05 1.5 TeV and 3 TeV 1e-06 **BIB occupancy in the** 1e-07 muon system is very low -800 -700 -600 -500 -400 -300 -200 -100 0

100

200

300

400

500

600

900

200

Background Beam-Induced big issue \triangleleft

 ∞

600

500

400

300

200

100

-100

-200

-300

-400

-500

-600

Beam-induced background in the muon system

BIB mainly composed of neutrons and photons

- Energy ranges at $\sqrt{s} = 1.5$ TeV o neutrons: from 10 MeV to 2.5 GeV
- photons: from 100 keV to 200 MeV

 ∞

son muon detectors

BIB hits concentrated around the beam axis in the endcaps

Muon reconstruction

Algorithms for tracks

Karol Krizka Tracks reconstruction algorithms performance

- 1. From electron positron colliders: Conformal Tracking (CT)
 - → with BIB: too long
 - └→ strategies:
 - a. Region of Interest (ROI)
 - b. double-layer filter
- 2. From hadron colliders: **Cubature Kalman Filter** (CKF) implemented using A Common Tracking Software (ACTS)

Muon reconstruction

Muons are reconstructed with the **Pandora Particle Flow** algorithm by matching tracks in the inner detector with clusters of hits in the muon system. Cluster = combination of hits (one hit per layer) inside a cone extending to the neighbouring layers

First results without BIB

Single muon efficiency

CT + Pandora

Transverse momentum

First results without BIB

Physics channels efficiency

Dealing with BIB

Muon reconstruction is quite straightforward without BIB.

But with BIB new strategies have to be adopted

Standalone muon reconstruction exploiting the low BIB occupancy in the muon system to identify a ROI for CT

ACTS overcome CT limits

1. Standalone muon reconstruction

- a. muon hits clustered inside a cone with angular aperture ΔR (selected value = 0.02)
- b. standalone muon track created if there are hits at least in 5 layers
 c. reconstructed hits in all tracker subsystems filtered (ROI)
- d. Conformal tracking algorithm applied

Limits

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

Limits

arXiv:2203.07964v1 Simulated Detector Performance at the Muon Collider

Low p_T

- inefficiencies in reconstruction in the region between barrel and endcap
- parameter tuning for high curvature tracks

2. ACTS

Efficiency >99% for p_T >10 GeV and >98% for 8° < θ < 172°

Dealing with BIB: ACTS+Pandora 2

5

ACTS + Pandora

15

2. ACTS

16

Resolution less then 10^{-4} GeV⁻¹ for p_T > 30 GeV

https://indico.cern.ch/event/1197844/ Study of H->ZZ* at 3 TeV CoM energy

Requirement	Signal events (4000)	ε_s^{abs}	$arepsilon_{s}^{rel}$	Background events (9996)	ε_b^{abs}	$arepsilon_b^{rel}$
$\mu^{\star}\mu^{-}$ detected	1804	0.451	0.451	2824	0.283	0.283
$p_t(\mu) > 10 \; { m GeV}$	1584	0.396	0.878	2685	0.269	0.951

Conclusions

What we learned so far

BIB occupancy in the muon system is very low Muon reconstruction is straightforward without BIB ACTS + Pandora is perfectly efficient in case of single muons with BIB Out-in approach seems more efficient for multimuon channels

Thanks for your attention