

Muon Collider Magnets

Introduction to Parallel Session

Luca Bottura and Lionel Quettier Muon Collider Collaboration Meeting CERN, 11-14 October 2022

Rationale

- What should be the (magnet) work of the coming four years, i.e. till the preliminary CDR ?
 - Define a coherent "machine configuration", starting from US-MAP and progressing beyond, based on advances on magnet technology (e.g. HL-LHC, HTS) as well as understanding of beam physics (e.g. 10 TeV)
 - Find the envelope of "representative challenges", the magnets that point to the main issues, and can provide focus for the specific R&D required to demonstrate feasibility. Address these main challenges through practical magnet design work

Machine configuration

				Magnet						Lengt Numb		Ramp		Homogeneit		Beam power	
Complex	Sector	Baseline	Magnet Type	technology	Field	Gradient	Aperture	Gap	Width	h	er	time	Field rate	у	Persistance	deposition	Comments
					(T)	(T/m)	(mm)	(mm)	(mm)	(m)	(-)	(s)	(T/s) / (T/m/s)	(units)	(units/s)	(kW/m)	
																	baseline 15 T, 2.4 m bore design, assumes 6
	Tanat	haaalina	a a la mai d	LTC	15		2400			2	1	21000	0.0007	100			hours ramp-up time and 5 kW deposited
larget and capture	Target	baseline	solenoid		12		2400			0.5	1	21600	5 0000	100		100	total power
		baseline	solenoid	NC	5		150			0.5	1	1	5.0000	100		100	antion based on a HTS sable, reduced here
		ontion	solenoid	HTS	20		600			15	1	21600	0,000	100		5	and shielding operating at 10, 20 K
	Capture and decay channel	option	solenoid	TBD	20		000			1.5	-	21000	0.0005	100		5	and shielding, operating at 1020 K
Cooling	Ionization Cooling	baseline	solenoid	TBD	2.2		600			2	66	21600	0.0001	100			cell A1
		baseline	solenoid	TBD	3.4		500			1.32	130	21600	0.0002	100			cell A2
		baseline	solenoid	TBD	4.8		380			1	107	21600	0.0002	100			cell A3
		baseline	solenoid	TBD	6		264			0.8	88	21600	0.0003	100			cell A4
		baseline	solenoid	TBD	2.2		560			2.75	20	21600	0.0001	100			call B1
		baseline	solenoid	TBD	3.4		480			2	32	21600	0.0002	100			call B2
		baseline	solenoid	TBD	4.8		360			1.5	54	21600	0.0002	100			call B3
		baseline	solenoid	TBD	6		280			1.27	50	21600	0.0003	100			call B4
		baseline	solenoid	TBD	9.8		180			0.806	91	21600	0.0005	100			call B5
		baseline	solenoid	TBD	10.5		144			0.806	77	21600	0.0005	100			call B6
		baseline	solenoid	TBD	12.5		98			0.806	50	21600	0.0006	100			call B7
	51 LO 11	baseline	solenoid	TBD	13.6		90			0.806	61	21600	0.0006	100			call B8
	Final Cooling	baseline	solenoid	HTS	30		50			0.5	17	21600	0.0014	400		C	baseline design from US-MAP
		minimal option	solenoid	HIS	40		60			0.5	17	21600	0.0019	100		C C	HIS NI option, including aperture margin
		target option	solenoid	HIS	60		60			0.5	17	21600	0.0028	100		L L	HIS NI option, including aperture margin
Accelerator	RCS1		dipole	NC	1.8			30	100	8.08	432	7 35F-04	2448 980	10			
	RCS2		dipole	LTS	10		100	50	100	2.4	288	1000	0.010	10			
			dipole	NC	1.8			30	100	6.06	432	1.80E-03	1000.000	10			
	RCS3		dipole	LTS	10	1	100			2.6	288	1000	0.010	10			
			dipole	NC	1.8	1		30	100	5.05	432	1.80E-03	1000.000	10			
	RCS4		dipole	LTS	10	1	100			2.6	288	1000	0.010	10			
			dipole	NC	1.8			30	100	5.05	432	8.46E-03	212.716	10			
Collider	Arc		dipole	HTS	10	300	150					1000	0.010	10		0.5	
	IR		quadrupole	HTS		466.32	171.4			2	4	1000	0.000	10			IQF1
			quadrupole	HTS		376.93	212.2			2	4	1000	0.000	10			IQF1a
			quadrupole	HTS		300.71	266			2	4	1000	0.000	10			IQF1b
			quadrupole	HTS		191.41	417			13.6	4	1000	0.000	10			IQD1
			quadrupole	HIS		214.03	411.2			5	4	1000	0.000	10			IQF2

A first attempt, by no means complete, nor fully correct...

Proposal - Configuration Meetings

- Dedicate some of the mmWG slots (or other ?) to discussion of the "magnet specs"
- Proposed participants (initial, by specialty)
 - Solenoids: magnets, beam physics, target, radiation and loss, vacuum, cryogenics
 - Accelerators: converters and magnets, beam physics, RF
 - Collider: magnets, beam physics, radiation and loss, vacuum, cryogenics

Representative challenges

- Target solenoid and capture channel
 - Large solenoid producing high field and submitted to high radiation load, target and shield integration
- 6D cooling solenoids
- Final cooling solenoid
 - Ultra-high-field solenoid, absorber integration, taking bore field to the extreme
- Fast ramped synchrotron dipole
 - Management of field ramp, combining very high power and precision, in a magnet with minimal stored energy and suitable field quality
- Collider arc dipoles and IR quadrupoles
 - Large aperture, high field accelerator magnets, hosting muon decay shield, submitted to high radiation heat load and dose

Target solenoid and capture channel

Aim at smaller SC bore than US-MAP (factor 2) and running

at 10...20 K to reduce helium and consumption (factor 2)

- Tentative specs
 - On-axis peak field: 20 T (same as US-MAP)
 - Bore⁽¹⁾: 1.2 m diameter (reduction by factor 2 w/r to US-MAP)
 - Magnetic length at peak field: 0.5 m (tentative)
 - Homogeneity: 1% (tentative)
 - HTS conductor technology, two options:
 - Large CICC cable ($J_E \approx 50 \text{ A/mm}^2$) (e.g. EU-DEMO conductors)
 - NI stacks in supporting structure ($J_E \approx 500 \text{ A/mm}^2$) (e.g. MIT/CFS R&D)
 - Operating temperature range⁽¹⁾: 10...20 K (gain factor 2...5 on COP)
- On-axis field along capture channel⁽²⁾

 $\frac{B_i B_f L_t^3}{B_i z^2 (3L_t - 2z) + B_f (L_t - z)^2 (2z + L_t)}$

(1) Target and shield integration will modify the bore and operating temperature

(2) Hisham Kamal Sayed, J. Scott Berg, "Optimized capture section for a muon accelerator front end", PRSTAB 17, 070102 (2014)

Final cooling solenoid

Aim at higher field (up to factor 2), and compact winding (500 A/mm²)

- Tentative specs
 - On-axis peak field: 40 T minimum, 60 T target (study will determine maximum that can be achieved)
 - Bore⁽¹⁾: 60 mm diameter
 - Magnetic length at peak field: 0.5 m (tentative)
 - Homogeneity: 1 % (tentative)
 - HTS NI (and variants) conductor technology to achieve J_E ≈ 500 A/mm² (compact windings are necessary to maintain forces and cost low⁽²⁾)
 - Operating temperature range⁽¹⁾: 10...20 K (gain factor 2...5 on COP)

(1) Absorber integration may modify bore and operating temperature

(2) The solenoids of the 6D cooling cells will require compact windings for cost optimization reasons. Work on HTS NI will also profit these magnets

Fast Ramped Synchrotron Dipole

Fastest ramped dipole, **minimum stored energy** (TBD) per unit length and **minimum ramp losses** (TBD)

- Tentative specs
 - On-axis peak field: 1.8 T
 - Bore: 30 x 100 mm (gap x width)
 - Ramp-rate: 2500 T/s (linear)
 - Magnetic length: 8.1 m (tentative)
 - Homogeneity: 10 units (tentative)

Collider Arc Dipole

Combined function arc dipole, **field/aperture** (TBD), **dose tolerance** (TBD) and minimum **energy consumption** (TBD)

- Tentative specs
 - On-axis peak field⁽¹⁾: 10 T (TBD)
 - On-axis peak gradient⁽¹⁾: 300 T/m (TBD)
 - Bore⁽²⁾: 150 mm (TBD)
 - Magnetic length: 15 m (tentative)
 - Homogeneity: 10 units (tentative)
 - LTS or HTS conductor technology⁽³⁾
 - Operating temperature range⁽²⁾: 1.9/4.2 K (LTS) or 10 to 20 K (HTS)

(1) Field and gradient are evolving with optics

(2) Muon decay shield integration may modify bore and operating temperature

(3) Some of the technology choices are limited by the values of peak field and temperature

This combination is not feasible

Important

- The point of the study is to produce a credible and affordable accelerator complex design (contain cost, energy efficient, sustainable operation)
- Technology is a mean not the end

Do not forget !

CERN-2022-001

rview

Accelerator Technology – Magnets

S. Izquierdo Bermudez, G. Sabbi, A.V. Zlobin

Executive Summary

The performance of high energy colliders is strongly dependent on their magnet system: arc dipoles for energy reach, and interaction region quadrupoles for luminosity. As the HEP community explores its best options to enable future discoveries, magnet technology considerations are essential to make informed decisions on the feasibility and cost of achieving the physics goals.

Conductor technologies

7

Three classes of superconducting materials can be considered for magnet applications: Nb-Ti up to 8 T, Nb₂Sn up to 16 T, and High Temperature Superconductors (HTS) beyond 16 T. These materials can be also combined in hybrid designs to optimize magnet cost and performance.

Excellent mechanical and electrical properties of multifilamentary Nb-Ti have made it the conductor of choice in superconducting accelerator and detector magnets starting from the Tevatron. It allows simple fabrication methods for wires and cables, and does not suffer from performance degradation under mechanical stress. However, it has limited operational range in terms of both field (< 8 T) and temperature (< 5 K)

Nb₅Sn wires are available from industry in long lengths with uniform properties and carry currents comparable to Nb-Ti wires of the same size at more than twice the field. The upgraded Interaction Region Quadrupoles of the High Luminosity LHC will be the first Nb₅Sn application in a high energy collider. Further improvements of critical current density (J_{-}) and specific heat (C_{p}) are being demonstrated in recent RkD wires. A reduction of the effective filament diameter is also required for future arc diploks, but has proven difficult to attain while preserving high J_c and controlling cost. In addition, maintaining industrial production capabilities for the wires of interest to the HEP community is becoming a challenge, in part due to lack of large orders after completion of the ITER production.

The most promising HTS conductors are Bi2212 and REECO. Bi2212 is available in round isotropic wires and can generally follow the design and fabrication approach developed for Nb₃Sn. A significant increase of J, has been obtained in recent years with improved powders and high-pressure heat treatment. However, Bi2212 technology is significantly more challenging than Nb₃Sn due to higher strain sensitivity, high required reaction temperature in an oxygen-rich environment, and chemical compatibility with the cable insulation and coil structural materials during heat treatment. Additional challenges derive from the high cost and limited industrial suppliers.

REBCO is produced by deposition on thin tapes that include layers of metals, oxides and ceramics for crystal plane alignment, mechanical strength and electrical stability. Steady improvements in engineering current density, uniformity and piece length have been obtained. The main challenge for application of these conductors to accelerator magnets is the development of cables capable of carrying high currents while retaining

Many of our questions were asked and discussed already during the formation of the EU and US R&D plan

Name 🔺

https://cernbox.cern.ch/index.php/s/E7D5NDmIceIrkle

aç	gnet	ts			۹	Create e	vent -	 Navigat 	10 1 F	arent catego	ory 📳	
								Q Manage	ers			
Aco	celera	tors		er	npty	÷.		Luca Bottur	a			
he	re are	4 ever	nts in th	ne future. Show				🧷 Materia	ls		R	
	Octo	her 2	022					There are no mate	erials yet.			
			20 Oct	Muons Magnets Working Gro	oup							
	Septe	embe	r 2022									
	G		29 Sept	Muons Magnets Working G	roup	-		-		-	~	~ ~
	G		15 Sept	Muons Magnets Working G	roup	J	lu	ist s	hc	ort	ot	20
	1		01 Sept	Muons Magnets Working G	roup						~	
	July	2022				r	n	eet	in	gs (ot i	the
	G		28 Jul	Muons Magnets Working Gro	oup				•			
	ŀ		07 Jul	Muons Magnets Working Gro	oup	r	n	agn	let	: W	orl	king
	June	2022						0		_		0
	ŀ		23 Jun	Muons Magnets Working Gr	oup	6	₹r	our). \	wit	h d	over
	l.		09 Jun	Muons Magnets Working Gr	oup	C	יכ	r	- /			
	1		02 Jun	Muons Magnets Working Gr	oup	(Эf	de	m	and	ds	and
	May	2022						0.0				
	April		12 May	Muons Magnets Working Gr	oup	6	ac	dvar	าต	es		
	- un		21 Apr	Muons Magnets Working Gro	oup							
				-	1							

March 2022

Μ

https://indico.cern.ch/category/13958/