

SRF System for Muon Collider Rapid Cycling Synchrotron

Muon collider collaboration – annual meeting

12/10/2022

F. Batsch, H. Damerau, I. Karpov

Acknowledgements: David Amorim, Fulvio Boattini, Luca Bottura, Rama Calaga, Alexej Grudiev, Elias Metral, Daniel Schulte, Akira Yamamoto

Outline

- Introduction
- High-energy muon Rapid Cycling Synchrotron (RCS) beam dynamics constraints
 - Distributed RF system
- Acceleration and RF system parameters
 - RF voltage, power to beam, tuning
 - Beam loading
- Summary of requirements and open questions

Introduction

Fast acceleration is key for muon survival rate

$$\frac{N}{N_0} = \exp\left(-\frac{1}{\tau_\mu} \int \frac{dt}{\gamma(t)}\right)$$

- → Needs large RF voltage in short length
 - High-gradient RF system
- → Huge total RF voltage per turn in circular accelerator

- \rightarrow Few turns, one μ^+ and one μ^- bunch simultaneously
- Impact longitudinal beam dynamics and RF system design?

3_

Introduction

Rapid cycling synchrotrons (RCS) chain, counter-rotating μ^+/μ^- bunches \rightarrow 63 GeV \rightarrow 0.31 TeV \rightarrow 0.75 TeV \rightarrow 1.5 TeV (\rightarrow 5 TeV)

- Conventional RCS and 2...3 hybrid RCS: normal and supercon. magnets
- Detailed parameter table: https://cernbox.cern.ch/index.php/s/l9VplTncUeCBtiz
- → F. Batsch, 'RF parameter choices and longitudinal stability', today 14h20

Outline

- Introduction
- High-energy muon Rapid Cycling Synchrotron (RCS) beam dynamics constraints
 - Distributed RF system
- Acceleration and RF system parameters
 - RF voltage, power to beam, tuning
 - Beam loading
- Summary of requirements and open questions

Distributed RF system along the circumference

Limit energy gain per RF station

- \rightarrow Avoid large energy difference between counter-rotating μ^+/μ^- beams
 - During first turn in RCS1 energy gain is about 20% of beam energy!
- → Transverse optics can limit the impact of beam energy differences
- → A. Chancé, Parametric study for a rapid cycling synchrotron, today at 14h00

Not the most stringent constraint

Longitudinal beam dynamics – single particle

2. Number of synchrotron oscillations per turn §

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF}\cos\phi_{\rm S}}{2\pi E\beta^2}} \propto \sqrt{V_{\rm RF}\cos\phi_{\rm S}}$$

- \rightarrow Can be easily exceeded in μ -accelerators
- → Several smaller longitudinal kicks per turn
- → Distribute RF system over several sections

Number of straight sections: 2

Why distributed RF system? How many stations?

Multiple longitudinal kicks per turn to smoothen synchrotron motion again

Number of

straight

sections: 30

• Stable synchrotron oscillations and phase focusing for $Q_S \ll n_{RF} \cdot 1/\pi$

Tracking simulations to determine longitudinal emittance growth (with BLonD code)

→ Favourable range of $n_{RF} \approx 30$

 \rightarrow Tune Q_s as large as 1.5

→ Details see F. Batsch

Long. emittance growth versus *n*_{RF} in RCS1

Outline

- Introduction
- High-energy muon Rapid Cycling Synchrotron (RCS) beam dynamics constraints
 - Distributed RF system
- Acceleration and RF system parameters
 - RF voltage, power to beam, tuning
 - Beam loading
- Summary of requirements and open questions

Different regime compared to conventional RCS

	\	\smile	
	RCS1	FNAL	J-PARC
Circumference, $2\pi R$ [m]	5990	468	348
Energy factor, $E_{\rm ej}/E_{\rm inj}$	5	20	7.5
Repetition rate, f_{rep} [Hz]	5 (asym.)	15	25
Magnetic ramp	Linearized	Sinus	Sinus
Number of turns	17	42 k	17 k
Max. RF voltage, V_{RF} [MV]	21000	0.86	0.44
Energy gain per turn, ∆E [MeV]	14800	~0.4	~0.2

- → F. Boattini, Magnet cycling considerations, Thursday
- → F. Batsch, RF cycling considerations, Thursday

Different regime compared to conventional RCS

	7	_	
	RCS1	FNAL	J-PARC
Circumference, $2\pi R$ [m]	5990	468	348
Energy factor, $E_{\rm ej}/E_{\rm inj}$	5	20	7.5
Repetition rate, f_{rep} [Hz]	5 (asym.)	15	25
Magnetic ramp	Linearized	Sinus	Sinus
Number of turns	17	42 k	17 k
Max. RF voltage, V _{RF} [MV]	21000	0.86	0.44
Energy gain per turn, ∆E [MeV]	14800	~0.4	~0.2

- → Significantly more RF voltage than any other RCS
- → Much fewer turns

Different regime compared to colliders

	RCS1	LEP2	FCC-ee
Circumference, $2\pi R$ [m]	5990	26658	91106
Energy factor, $E_{\rm ej}/E_{\rm inj}$	5	4.8	n/a
Repetition rate, f_{rep} [Hz]	5 (asym.)	Slow (min.)	n/a
Magnetic ramp	Linearized	n/a	n/a
Number of turns	17	few 10 ⁸	108
Max. RF voltage, V _{RF} [GV]	21	3.6	11.3
Energy gain per turn, ∆E [GeV]	14.8	3.49	10

- → Even more RF voltage than any other circular collider
- → Much fewer turns

Rapid Cycling Synchrotron (RCS) parameters

- Principle of hybrid RCS (RCS2, 3 and 4):
 - Fast ramping of normal conducting magnets from negative to positive field: -1.8 T → + 1.8 T
 - Fixed-field super-conducting magnets in addition (max. 10 T)
- \rightarrow Beam orbit moves during acceleration $\rightarrow f_{rev}$ and f_{RF} sweep

- → Assume max. 10 cm orbit length change for RCS2
- → Details by A. Chancé this afternoon

RF frequency sweep (example of RCS2)

- RF frequency sweep need in ~1 ms, from injection to extraction
- $\Delta f/f = \Delta I/(2\pi R) \approx 1.7 \cdot 10^{-6} \rightarrow \Delta f \approx 2.2 \text{ kHz}$
- → Control RF frequency during 'beam pulse'
- → In addition to compensation of Lorentz force detuning
- Reported tuning ranges for ILC-style cavities
- W. Cichalewski et al., ICALEPCS2015: ∆f≈ 1.2 kHz
- Y. Pischalnikov, <u>ILCX2021-ILC</u>: $\Delta f \approx 3 \text{ kHz}$

→ FerroElectric Fast Reactive Tuners (FE-FRT)

Why super-conducting?

- Large RF voltage during long pulses
- Energy efficient acceleration technology
- High accelerating gradient per RF structure length: 30 MV/m
- Standing wave operation for counter-rotating bunches

RCS RF system choices

Common frequencies for superconducting RF

Frequency	Accelerator	Remark
352 MHz	LEP	Moderate gradient
400 MHz	LHC, FCC	Moderate gradient
800 MHz	ERL, (FCC)	Alternative option also for μRCS
1.3 GHz	TESLA, ILC, FELs (XFEL)	Wide-spread technology with decades of experience
1.5 GHz	JLab-CEBAF	

 \rightarrow 1.3 GHz assumption \rightarrow F. Batsch, see talk later today

Pulsed of operation, duty cycle

- Repetition rate of RCS chain: 5 Hz (as ILC)
- Minimum beam pulse length for RF system?

	RCS1	RCS2	RCS3	(RCS4)
Ejection energy, $E_{\rm ej}$ [TeV]	0.31	0.75	1.5	(5.0)
Circumference, $2\pi R$ [km]	5.99	5.99	10.7	(35)
Acceleration time, beam pulse	0.34	1.1	2.4	(6.4)

→ Pulse length ~1.6 ms same order as for ILC (beam pulse length 0.7 ms)

length, τ_{acc} [ms]

Chronogram – bunch structure

ILC: 1312 moderate intensity bunches spaced by 554 ns

μRCS: Two very high-intensity counter-rotating bunches

Outline

- Introduction
- High-energy muon Rapid Cycling Synchrotron (RCS) beam dynamics constraints
 - Distributed RF system
- Acceleration and RF system parameters
 - RF voltage, power to beam, tuning
 - Beam loading
- Summary of requirements and open questions

First beam loading considerations

Only one high-intensity bunch (of each type) accelerated in RCS

	ILC	RCS1 (and RCS2)
Number of bunches, $n_{\rm b}$	1312	1 each μ^+ and μ^-
Bunch spacing, τ_{bs}	554 ns	$T_{\text{rev}} = 20 \ \mu\text{s}$
Bunch intensity, $N_{\rm b}$	2 · 10 ¹⁰ p/b	2.5 (2.3) · 10 ¹² p/b
Average beam current, I _b	5.8 mA	2 × ~20 mA

- Average beam current more than three times (2x) above ILC
- Very strong transient beam loading

External loading and feedback requirements

- Steady-state detuning to minimize reflected power (reactive beam loading compensation)
 - $\rightarrow \Delta f_{RF}/f_{RF} \approx 5 \cdot 10^{-7} \rightarrow \Delta f_{RF} \approx -2 \times 0.32 \text{ kHz}$
- Optimal external quality factor

$$Q_{\mathrm{ext,opt}} \simeq \frac{V}{(R/Q)I_{\mathrm{RF}}\sin\phi_{\mathrm{S}}}$$

J. Tückmantel, CERN-ATS-Note-2011-002 TECH

- → Optimal external quality factor $Q_{\text{ext,opt}} \approx 1...2 \cdot 10^6$ (within 1...10 · 10⁶ of tunable fundamental power coupler for ILC)
- \rightarrow Assuming **constructive interference** of counter-rotating μ^+ and μ^- -bunches
- → Beam-loading of counter-rotating beams subject to further studies

Transient power and feedback considerations

- With 2 × 20 mA beam current, power to beam ~2 × 430 kW
- Beam induced voltage at f_{RF} about 2 x 1.7 MV during bunch passage (builds up)
 Example: LHC RF feedback system
- Conventional direct feedback (e.g., loop delay, τ_d ≈ 700 ns in LHC) too slow
 - Correction would be applied after bunch
- Need 1-turn delay feedback with μ⁺/μ⁻ separation

P. Baudrenghien, T. Mastoridis, PRAB 20, 011004 (2017)

Delay

- Muon RCS advantage: only one bunch per beam and few turns
- → Explore cycle-by-cycle adaptive compensation

Outline

- Introduction
- High-energy muon Rapid Cycling Synchrotron (RCS) beam dynamics constraints
 - Distributed RF system
- Acceleration and RF system parameters
 - RF voltage, power to beam, tuning
 - Beam loading
- Summary of requirements and open questions

Summary

- Challenging 1.3 GHz RF system for μRCS
- Main 'non-conventional' assumptions
 - Modular, distributed RF system: ~30 RF stations (700 9-cell cavities, RCS1) ideally equidistant → infrastructure
 - Longer pulses than ILC: 2.4 ms (6.4 ms) beam pulse for RCS3(4)
 - More power, larger beam current
 - Cavity tuning to compensate orbit length sweep during acceleration (~few kHz) → in addition to measures against Lorentz force detuning and mechanical resonances

Summary of RF requirements

Parameter	Value	Remark
Frequency, f_{RF}	1.3 GHz	
Tuning range (piezo), Δf	2.2 kHz	Sweep for acceleration, hybrid RCS2/3/4
Gradient, V_{RF}/I	30 MV/m	
Beam pulse length, τ_{acc}	0.34/1.1/ 2.4/6.4 ms	RCS1/2/3/4
Beam current, I _{DC}	$2 \times 20 \text{ mA}$	
Power to the beam (max., RCS1)	2 × 250 MW	~2 × 430 kW/cavity

Open questions for discussion

- Frequency choice of 1.3 GHz?
- What is the baseline gradient for the RCS design? 31.5 MV/m? 45 MV/m?
- Impact of distributed RF system? Power for cryogenics?
 Cost in terms of AC power?
- Impact of μ+/μ-bunches in opposite directions?
- Beam current too large for ILC-type cavities? Limitations of fundamental power coupler?
- Controlled frequency sweep in combination with Lorentz force detuning?

