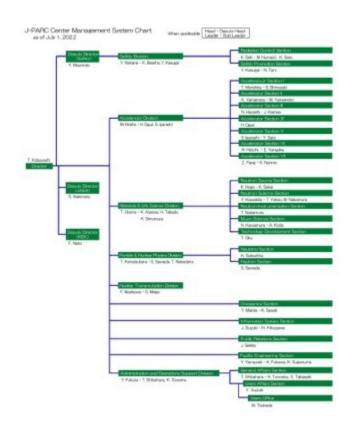
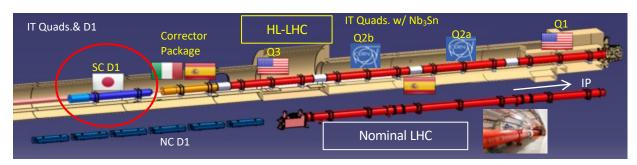

Status of Superconducting Magnet Projects and R&D at KEK

Toru Ogitsu
On be half of KEK Cryogenics Science Center
and
J-PARC Center Cryogenics Section


KEK Cryogenics Science Center and J-PARC Center Cryogenics Section

Scientists
Cryogenics Science Center
Toru Ogitsu(Head)
Tatsushi Nakamoto(D1)
Ken-ichi Sasaki(J-PARC)*
Michinaka Sugano(D1)
Masami Iio(J-PARC)*
Kento Suzuki(D1)

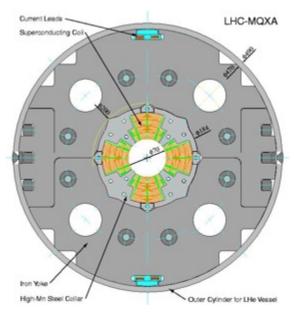
Naoyuki Sumi(J-PARC)*

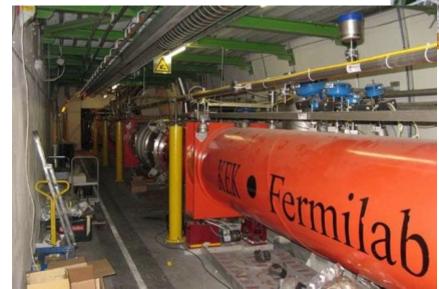

J-PARC Cryogenics Section Yasuhiro Makida(IPNS) Ken-ichi Sasaki(CSC)* Takahiro Okamura(IPNS) Masami Iio(CSC)* Makoto Yoshida(IPNS) Naoyuki Sumi(CSC)*

- On going Projects
 - HL-LHC D1
 - COMET
 - g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Summary

- On going Projects
 - HL-LHC D1
 - COMET
 - g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Summary

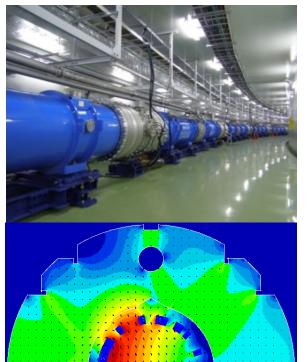
HL-LHC D1 Magnet

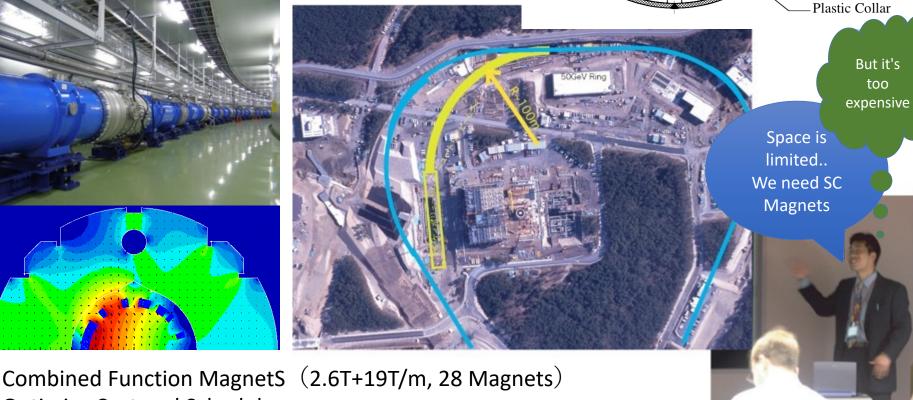




Japanese Contribution to LHC MQXA: Interaction Quadrupole

 Focus Beam at Interaction Region (Increase Luminosity)


• Field Gradient 280T/m, Maximum Field 8.7 T



KEK SC Magnets J-PARC Neutrino Facility

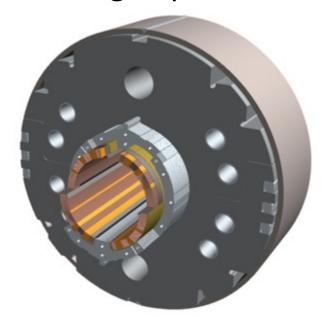
 Neutrino Facility needed SC magnets due to space limitation

SC Busbar

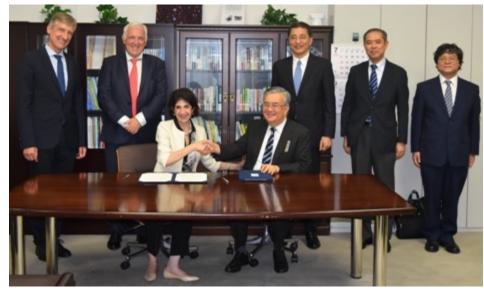
Iron Yoke

Stainless Steel Shell

(SHe Vessel) Lock Key


> Yoke Stack Tube

L/R Asymmetric

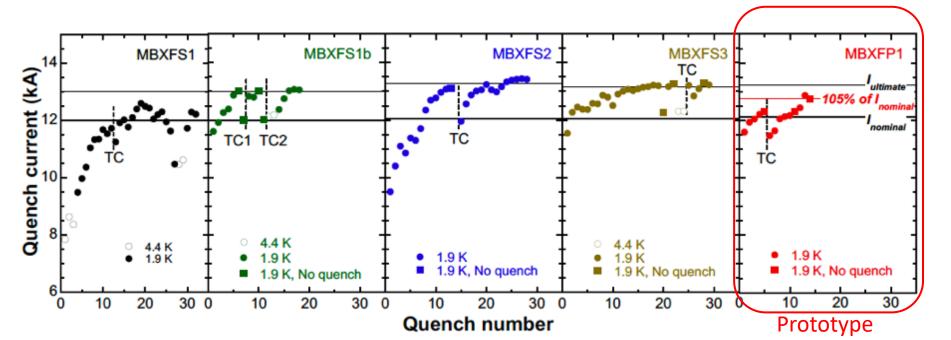

Optimize Cost and Schedule

Beam Separation Dipole KEK Contribution to HL-LHC

Large Aperture 150mm, 6T Dipole

HL-LHC D1 Magnet

Sigh of MOU between CERN and KEK


Development of D1 Magnet

D1 model magnet developed by KEK

Summary

- Accelerator Magnet Development
 - LHC MQXA
 - J-PARC Beam Line Magnet System for Neutrino Experiment
- D1 development
 - Model Magnet (since early 2010s)
 - 3 Model Magnets
 - 1st model rebuilt due to insufficient preload
 - 1st rebuilt and 2nd,3rd showed good training performance
 - Field qualities are not good > modified for Prototype
 - Prototype Magnet (since 2018)
 - Quench performance were good enough
 - Field quality needed to be optimized for production
 - Production Magnet (since 2021)
 - 5 production started to be built
 - 1st one come next spring

- On going Projects
 - HL-LHC D1
 - COMET
 - g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Issue on Detector Magnet
- Summary

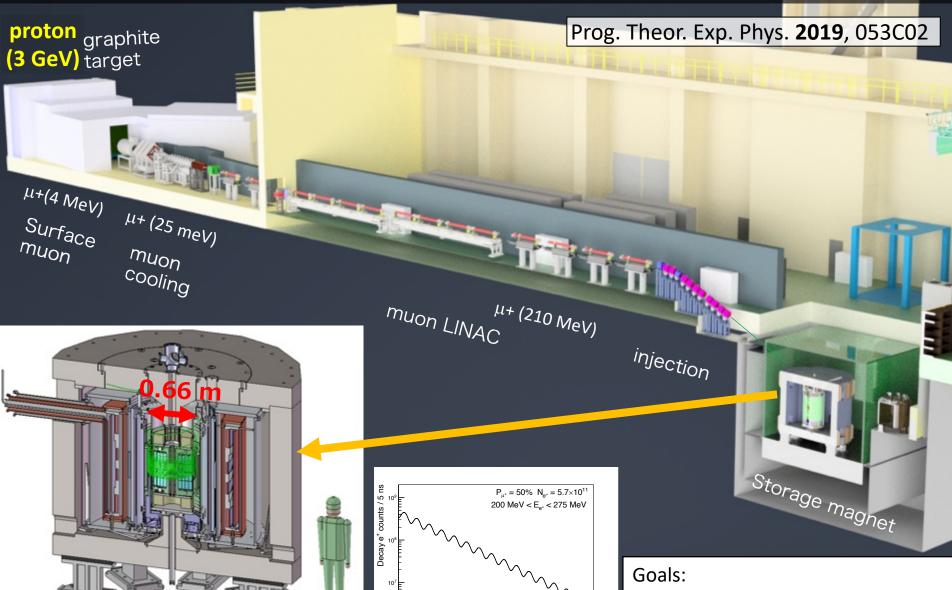
Superconducting Magnet System (COMET Phase-1) PowerSupp. CurrentLeadB ansferTube ColdBo TransferTube to PCS Pion Capture Transport Solenoid Solenoid (MTS) Detector Solenoid **Transport** Solenoid (MTS)

Transport solenoid is installed and cold tested

Status of PCS Main Unit

► PCS main unit has been in production since 2020 at the factory of Mitsubishi Electric in Kobe.

Annual milestones

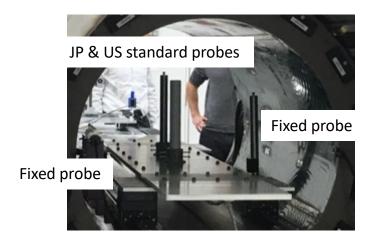

- > FY2020: CS & TS1 cold masses: Completed
- > FY2021: Cooling objects conforming to High Pressure Gas Safety Act
- > FY2022: Main unit (cold masses, thermal shields, Part of vacuum vessel)

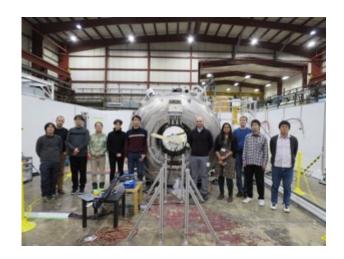
Summary

- The production of PCS main unit is underway at Mitsubishi Electric's factory .
- The production of cooling objects conforming to High Pressure Gas Safety Act is in progress. The production of built-in radiation shield and vacuum vessel parts is also progress in parallel.
- The PCS main unit will be delivered at the end of September 2023. And it will be installed in the beam room in Phase-I construction after temporary storage at the J-PARC site.
- Construction of a return yoke is in progress with the strong contribution of the Hadron Beamline Group.
- ► All parts of the return yoke will be delivered by mid-March 2022.

- On going Projects
 - HL-LHC D1
 - COMET
 - g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Issue on Detector Magnet
- Summary

Muon g-2/EDM experiment at J-PARC




muon storage magnet

g-2 450 ppb (~ BNL/FNAL run 1) EDM 1.5 x 10^{-21} e · cm (x70 better)

Cross calibration in US-JP collaborative framework

- Check consistency btw J-PARC and FNAL probes
 - increase the robustness of magnetic field measurement
 - collaboration with ANL and UMass group
 - at 1.45, 1.7 and 3.0 T
 - ✓ measure magnetic field of single magnet at the same location with different probes
- Performed tests at 1.45 and 1.7 T in 2019

- planned 3 T test in 2020 <- postponed
- Analyzed the data at 1.45 T and 1.7 T with blind offset

2021/12/09

Summary

- Updates of magnet design
 - Optimized main coil size
 - Systematic and statistical study of manufacturing error on the -> on going magnetic field error
 - Study of shimming scheme -> on going
 - Study of magnet system vibration -> on going
- Field monitoring system
 - R&D of moving stage
 - material study of rotating bearing
 - Multi channel probe system
 - made 10 ch. prototype, checked cross-talk and meas. scheme
 - Cross calibration analysis
 - ▶ found the difference : 40 ~ 55 ppb -> further study is underway
 - He3 probe
 - made cells, checked discharge performance
 - preparing laser room to do the test in J-PARC

- On going Projects
 - HL-LHC DI
 - COMET
 - ▶ g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Issue on Detector Magnet
- Summary

Nb3Sn conductor R&D structure

Design and Characterization

KEK

CERN

• In-depth characterization HT, J_c , composition, d_{eff} ...

- Program coordination
- Defining specification
- Conceptual design

- Evaluation of J_c , B_{c2}
- Mechanical property

Spec,

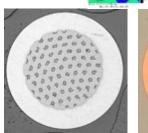
design

Tokai University

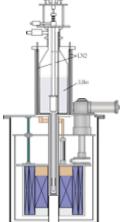
- Optimization of HT condition
- Microstructure observation
- Compositional analysis

Tohoku University

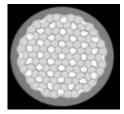
- High field magnet facility
- Evaluation of d_{eff}

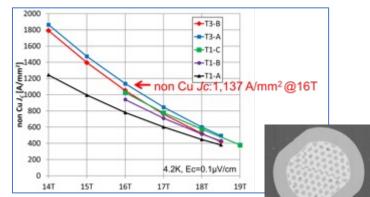


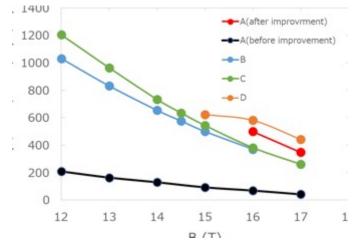
28 T HM



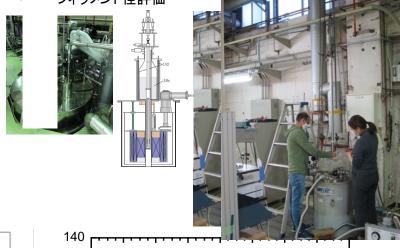
Kobe Steel / JASTEC

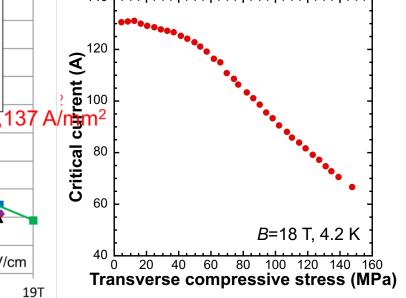

Furukawa Electric




Status of Nb3Sn conductor R&D

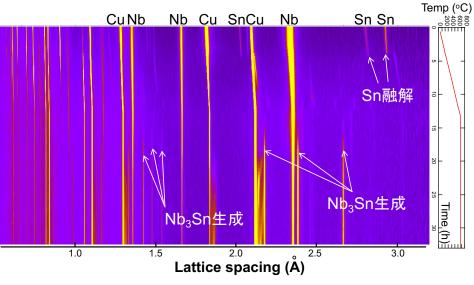
- DT wire
 - non Cu J_c @16T 1,100 A/mm²
 - reasonable results in d_{eff} (~50µm)
 - and rolling test (Ic/IcO>95%, RRR>100 @ 10% roll)
 - Production of 10km wire is on going.
- Nb tube wire
 - Non-Cu Jc of 580 A/mm² @16 T
 - Further improvement in progress





東北大学

ecent Progress


- 高磁場試験設備の提供
- ・
 ち
 な
 フィラメント
 径
 評
 価

Ic Measurement with Transverse Stress at Tohoku U.

In-situ Material Analysis during Heat Treatment at J-PARC Neutron Beam Line

Future Magnet Development with Large Funding (Budget Proposal being submitted)

Magnet Manufacturing Experience Infrastructure Magnet Design FCC D1 Design study Cool reaction ROXIE_{10,2} **Advanced Conductor Development R&D** structure Nb₃Sn開発 **Design and Characterization** · In-depth characterization CERN HT, J_c , composition, d_{eff} ... Evaluation of J_c, B_{c2} Tohoku University Tokai University Mechanical property Optimization of HT condition • High field magnet facility **Large Aperture** Microstructure observation 12T Magnet **Fabrication** Coil impregnation Kobe Steel / JASTEC Furukawa Electric 16-20T Magnet HTS Coil Development 支持構造付加型CORC 4-8T **Insert Coil** Tohoku&KEK Stress analysis on HTS cable **High Field Magnet for** 3D strain measurement on HTS tape Kyoto&KEK

Quench stability and protection on

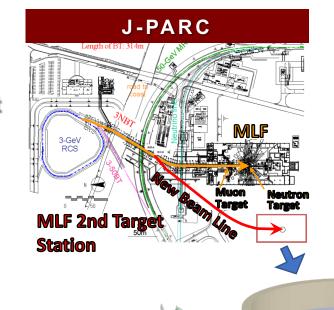
HTS cable

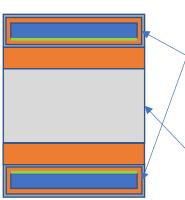
New JSPS Funding with Tohoku and Kyoto

Future Accelerator

- On going Projects
 - HL-LHC D1
 - COMET
 - g-2/EDM
- Future R&D
 - High Field Magnet
 - Radiation Hard Magnet
- Summary

J-PARC Future Muon Source

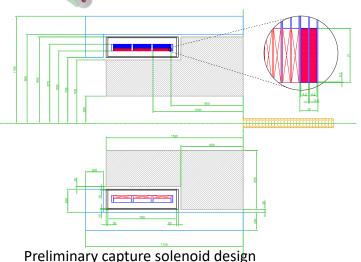

J-PARC MLF 2nd Target station


- Solenoid covering production target
 - → Absorbed Dose: <u>130 MGy</u>???

Conventional Magnet Technology

- NbTi Cable
- → T=5 K with heat load reaching 650 W? due to nuclear heating
- Organic Material for Insulation
- → Degradation of the machine strength from 10 MGy

Development of next-generation radiationresistant superconducting magnet has been awaited



HTS Tape 12mm wide tape 30µm thick Hastelloy 5µm thick Copper Plating 4µm thick Solder Plating

Copper Clad Aluminum Copper: 60µm thick each Aluminum: 1.1 mm thick Solder Plating: 4µm each

Preliminary	conductor	design
I I CIIII I I I I I I	COHUUCIO	ucsigii

Parameter	Value
Coil Inner Diameter	1600 mm
Coil Thickness	55 mm
Coil Length	600 mm
Operation Current	1200 A
Peak Field @solenoid axis	1.12 T
Peak Field @coil	2.41 T
Peak Field B//ab	2.09 T
Peak Field B//c	2.25 T
Inductance	~4 H
Total conductor length	~7km

Summary

- On going Project
 - HL-LHC D1
 - COMET
 - g-2/EDM
 - Also some user experiments at J-PARC
 - Too many projects for not enough resources
- For future projects
 - We still need R&D for new technologies (Nb3Sn, HTS...)
 - Can we make it?
 - Collaboration!: Universities (Tohoku, Kyoto, Berkeley), Laboratories (LBNL, CERN..)
 - Need Funding
 - Collaboration!: US-JP, CERN-KEK, Joint Proposal with Accelerator Dev. and/or Physics Groups and/or Universities
- For survival: widen collaborations and applications