

Workplan for magnets WP7 task3

F. Boattini 12.October.22

Task 3: Accelerator magnets and powering system

<u>General Goal for 2026</u>: magnets + powering design for 10TeV with 3TeV stage with conceptual design of magnets and estimation of power system cost and total losses and land occupation.

Task 3: Accelerator magnets and powering system

<u>Numbers</u>: NRG $\approx 10 \div 100MJ$; $PW_{pk} \approx 10 \div 50GW$; Optimization required $T_{ramp} \approx 0.5 \div 10ms$; $f_{rep} \approx 10Hz$

Task 3: Activities and cooperating bodies

Resistive magnets

- Optimal design of resistive dipoles and quadrupole with emphasis on minimization of energy content (UNIBO)
- Mathematical models of magnets' energy, losses and saturated behaviour (TU Darmstadt)
- Integrated power system / magnets optimization to minimize the total power requirements /cost and land occupation (CERN, LNCMI)

Superconductive magnets LTS

- Initial hypothesis based on [8-10T) magnets (Niobium-Titanium)
- Questions to be answered:
 - What happens if we accept 8T?
 - What aperture / winding distribution should we consider?
- Basic electro-mechanical 2D design (CERN, UNIBO)

Superconductive magnets HTS RCS4 10TeV

 Scooping studies for dB/dt in the range of 300T/s and Bgap > 2T (U-TWENTE, FNAL potential cooperation)

Dipole MAP design 156mmx25mm, \pm 1.5T

LHC Dipole. Niobium-titanium, 8.33T, Ø56mm gap

Task 3 – Milestones and deliverables for 2026
