

Disclaimer !

Here we focus on cryogenic options for the **collider**.

One-of-a-kind magnets (and more) on the rest of the accelerator chain can potentially be allowed to have tailored, less optimised solutions, which are outside of the scope of this talk

A few key numbers for the collider ring

- **High field,** high gradient magnets with **large apertures**, **shielding** drives aperture
- **Beam losses O(500 W/m)** (1/3 beam energy)
- Heat loads on magnet O(5-10 W/m), 1% total load (see talk A. Lechner)
- **Short** dipole field-free gaps between magnets **O(0.2 m)**
- **Magnets mounted on movers** for beam deflection

Why avoid the (LHC) cooling solution?

- There are several reasons to try and move away from the **habit** of **He II bath cooling**:
	- He II cooling relies on cold compressors, **highly inefficient**
	- **EXPLEM** This makes an intrinsically "bad" **COP** (energy efficiency) even worse
	- Due to the sheer amount of He, **quench management and safety** are rather complex
	- Operational downtime after a quench is significant, due to large enthalpy difference of He $I \rightarrow$ He II transition, **reducing availability**
	- Large amounts of He in a high radiation environment can lead to **tritium production (?)**

4

▪ **He is a limited, expensive, and volatile resource**

Helium is a limited geological resource

- Byproduct of natural gas with limited sources worldwide (not all NG sources are He-rich)
- Other cryogenic fluids originate from air separation
- He availability affected by
	- **Unbalanced supply and demand** (shortages 2006 and 2013)
	- **Geopolitical stability** in country of extraction (Qatar 2017)
	- **Logistics complexity (Suez 2020)**
	- **EXECT** Maintenance shutdown on LNG feed and He liquefaction plants
- Long term evolution driven by the US
	- **Helium act 1925** (prod. increase in the 60's, US fed. strategic reserve)
	- **Helium privatization act 1996** (fed. gov. expenses paid back by selling 1bcm till 2015, investment in Algeria/1997 and Qatar/2008)
	- **EXECT** Stewardship act 2013 (yearly auctions to private sector, now only to federal users)

Many thanks to F. Ferrand for information on He market! [\(Indico](https://indico.cern.ch/event/1183565/))

Helium is a by-product of natural gas

capacities available in quantity of Iso container of 4.5 tonnes

Choice of cooling strategy

Thermodynamics of cryogenic refrigeration Ideal Carnot ≠ Reality

- Carnot efficiency gives a **potential** reduction in operational costs
	- e.g. from 4.5 K to 10 K there is a **potential** factor 2.3 improvement in efficiency
- But **reality** (process inefficiencies) needs to be considered
	- Actual COP at refrigerator interface for 10 K is 150 *vs.* 240 at 4.5 K → factor 1.6 improvement in efficiency (W/W)

7

Losses on distribution and heat extraction systems **still need to be added (up to 30%-50%!)**

Choice of cooling strategy

Cooling options below 10 K – LTS range

Two-phase He

- Temperature stability
- Highest heat transfer coefficient α
- Small *ΔT* if forced flow \mathbf{r}^2
- High available enthalpy diff. \rightarrow low \dot{m} \mathbb{C}
- High relative pressure drop *Δp/p* $\sqrt{ }$
- High He content if bath cooling
- Forced flow \rightarrow complex flow patterns \mathbb{Z}

Supercritical He at 5 K – 5.5 K

- Single phase-flow advantages Ů
- Lower *Δp/p* €
- 的 Some *ΔT* along magnet length
- Lower α than two-phase, pressure-dependent \mathbf{r}^{\prime}

9

Lower available *Δh*, pressure-dependent ☆

Cooling options above 10 K – (low) HTS range

Two- *vs.* **single-phase flow local heat extraction Implications for magnet design**

- **EXECUTE:** Heat transfer coefficient α in liquid He is $O(1) - O(2)$ higher than options using highspeed, high-pressure gas/**supercritical fluid**
	- If **heat exchange area is limited**, choice of **cooling strategy needs to be adapted** to provide the best possible heat transfer coefficient
- **Magnet design** should strive to incorporate, **from the start**, **heat extraction pathways** as close as possible to the coil and **maximise heat transfer exchange area**

Key takeaways (I)

- **EXTED FIGHT THERE IS THE 19 IN THE THE THE THE THE THE THE SET IS SET I** option for the muon collider magnets?"
- **EXEDENT Solution will depend on choice of conductor, operating temperature, local heat extraction,** distribution strategy and associated losses
- Carnot factor and COP should be taken as a potential improvement, but **a correct assessment can only be made after considering the whole process, distribution and local heat extraction chain at a certain temperature range**
- When opting for cooling solutions, esp. those that rely on forced flow, **magnet design with the cooling circuit in mind is crucial** ocal heat Process range extraction efficiency Choice of Heat Size of · Carnot

conductor

Required 7

availability

Static vs

dynamic

heat loads

margin

He

transfer coil

to cooling

extraction

pathways:

conduction.

fluid flow?

fluid

Heat

distribution

Allowable

· Number of

re-cooling

line

 $\Delta D/D$

units

efficiency

· Reality

(losses)

range to

available

working

points

 $Match(T, p)$

Key takeaways (II)

EXECT: For Nb₃Sn technology, two-phase He circulating in channels close to the magnet or singlephase supercritical flow can be a solution minimising He content while keeping a reasonably small temperature gradient (**potential COP = 240 W/W**)

• For HTS, the same options can be considered, but temperature range can be extended to forced flow of He gas at temperatures up to 30 K; larger temperature gradients need to be accepted for the same heat extraction **(potential COP = 80 – 150 W/W**)

EXTED For components with extremely high heat loads such as beam shielding, sustainability for high power and COP drives options starting at temperatures close to that of $LN₂$ (**potential COP < 10 W/W**)

Thank you for your attention!

Spare slides

Important questions that went unaddressed (I)

- "Nelium" as a possible refrigerant might be a good idea to extract heat loads at higher temperatures
- Helium activation reduce He content close to the cold mass as much as possible
- **•** Very small interconnection regions, moving magnets \rightarrow showstopper?
- He bubble 'sinking' due to high magnetic field gradients
- Beam screen heat loads 1/3 beam energy i.e. 500 W/m
- Absorbers and LH2 evaporation due to the beam are also a possible issue
- High losses from RF and ramping losses also to be addressed
- Target solenoid: can we work at 20 K instead of 4 K? Where is the optimum with temperature/heat load/bore?

Important questions that went unaddressed (II)

- Accelerator: accelerator ring is going to be SC magnets interleaved with NC magnets. This makes for warm-to-cold interconnections every 10 m or so, with an interconnect space of 50 cm or less. How to achieve this?
- Can we have the yoke outside/warm?
- Can we have completely warm beam screen/absorber?
- How does ortho-to-para hydrogen conversion behave in the presence of (high) magnetic fields?

Example two-phase He flow in channel

courtesy B. Naydenov, see ([link](https://iopscience.iop.org/article/10.1088/1757-899X/1240/1/012049/pdf))

Flow pattern map and key quantities of interest in simulated twophase He flow in a channel. The temperature along the channel decreases, while pressure drop and vapour quality increase. Note the variation of the heat transfer coefficient α along the channel.

Example supercritical vs. gas flow in channel courtesy B. Naydenov, see ([link](https://iopscience.iop.org/article/10.1088/1757-899X/1240/1/012049/pdf))

Temperature evolution and heat transfer coefficient α along a channel for simulated 2.5 bar and 25 bar forced He flow. Note the lower ΔT and higher α in the 2.5 bar (supercritical) case for same heat load and mass flow rate conditions.

LTS performance boundaries

from A. Godeke's plenary lecture at HTS Modelling 2022 ([link](https://htsmod2022.sciencesconf.org/data/program/7_Arno_Godeke_.pdf))

Nb₃Sn

8

Maximum $B_{c2}(T)$

24 at.% Sn

 12

14

10

TEMPERATURE [K]

Effective $\vec{B}_{c2}(T)$

16

18

Present performance boundaries

MAGNETIC FIELD [T]

Magnetic field and temperature 30

Nb-Ti

Godeke, J. Appl. Phys. 97, 093909 (2005) Godeke, IEEE Trans. Appl. Supercond. 17, 1149 (2007)

 \mathfrak{p}

 $Nb-Ti \rightarrow Fully$ optimized $Nb₃Sn \rightarrow Further potential$ (upcoming topical review)

Amo Godeke - High Temperature Superconductors and Their Application
Planary Lecture - H7S Modelling 2022 - Nancy, France - June 15, 2022

MAGNETIC FIELD [T]

25

20

15

 10

5

n

 Ω

HTS performance boundaries

from A. Godeke's plenary lecture at HTS Modelling 2022 ([link](https://htsmod2022.sciencesconf.org/data/program/7_Arno_Godeke_.pdf))

Why higher temperatures are cooler (1)

Increased performance boundaries with HTS

Larbalestier, Nat. Mat. 13, 375 (2014) Godeke, Supercond, Sci. Technol, 33, 064001 (2020) Gains in magnetic field and operating temperature

23

Arno Godake - High Temperature Superconductors and Their Application Plenary Lecture - HTS Modeling 2022 - Nancy, France - June 15, 2022