

MInternational UON Collider Collaboration

RF Parameter Choices and Longitudinal Stability

F. Batsch, H. Damerau, I. Karpov

<u>Acknowledgements</u>: David Amorim, Scott Berg, Fulvio Boattini, Luca Bottura, Christian Carli, Antoine Chancé, Alexej Grudiev, Elias Metral, Daniel Schulte

Presented on the 1st Muon Collider Annual Meeting, CERN, 2022

Outline

- The TESLA cavity and RCS parameter
- Intensity effects & longitudinal beam dynamics:

Short-range wakefield and beam loading compared to the cavity voltage

- Synchrotron tune & Number of RF stations versus emittance
- Emittance evolution during the acceleration stages
- Outlook and Summary

-1- :

- Hybrid RCSs have intersecting normal conducting (NC) and superconducting (SC) magnets
- Studies presented aim to determine the RF (cavity) and lattice parameters (number of RF stations, momentum compaction factor,...)

Parameters and tools: General parameter

Detailed parameter table: <u>https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz</u>

	RCS1→314 GeV	RCS2→750 GeV	RCS3→1.5 TeV	1) 19 Basic data 19 Particles 16 Costs 17 Type		Stage 1 Init Value - μ M€ - - RCS	Stage 2 Details Value µ hybrid RCS	Stage 3 Details Value # hybrid RCS
Circumference, $2\pi R$ [m]	5990	5590	10700	11 Dynamics 22 Acceleration time 23 Injection energy 22 Ejection energy	E _{aj} [M	ns] 0.34 X/Ju 63000 X/Ju 313830.de		750000 1500000
Energy factor, <i>E</i> _{ej} / <i>E</i> _{inj}	5.0	2.4	2.0	Energy ratio A Momentum at e Momentum at e Momentum at e Mumber of turns Planned Survival rate	p/c M p/c M n _{um}		2.39 313935 750100 55 0.9	5 750106 5 1500106 5 66 9 0.9
Repetition rate, f_{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	Total survival rate Accel, Gradient, linear for survival Required energy gain per turn Transition gamma	лЕ (N 7,	- 0.9 V/m] 2.44 teV] 14755 - 20.41	0.81 1.33 7930 20.41	3 1.06 0 11364 -30
Number of bunches	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	1μ⁺, 1μ⁻	3/ Injection relativistic mass factor 3/ Ejection relativistic mass factor 3/ Injection v/c 3/ Ejection v/c	T _{el}	- 597 - 2971 % 0.9999986 % 0.99999943	2971 7099 0.999999943 0.999999901	9 14198 8 0.9999999901
Bunch population	2.5x10 ¹²	2.3x10 ¹²	2.2x10 ¹²	Parameter Classical RCS Param	R, /R, ?	m] 953.3 m] 5990 - 0.61 m 581.8	953.3 5990 1 0.61 581.8	0 10700 1 1.79 1 0.628
Survival rate per ring	90%	90%	90%	Serio factors Serio f	L,,, (m] 2334.7 T] 0.36 - TESLA Hz] 1300	2335.7 1.80 TESLA 1300	3975.7 2.34 TESLA
Acceleration time [ms]	0.34	1.04	2.37	10 Harmonic number 70 Revolution frequency ej 00 Revolution period 01 Max RF voltage 02 Max RF power	h f _{ee} [k Trey [i	- 25957 Hz] 50.08 IS] 20.0 IV] 20.87	25957 50.08 20.0 11.22	46367 28.04 35.7 16.07
Number of turns	17	55	66	RF Filling factor M Number RF stations Societies Number of cavities T Peak Impedance Societies Soci	· · ?	- 0.4 - Around 50 - 9-cell - 696 2] //m] 30	0.4 Around 50 9-ceil 374 30	Around 50 9-cell 536
Energy gain per turn, ΔE [GeV]	14.8	7.9	11.4	Average energy gain per total straight Accelerating field per total straight Accelerating field gradial straight Accelerating field gradialt, with FF Stable phase Conversion factor mm mrad – eVs	∆E/L [M ♠	V/m] 8.9 //m] 22.3 "] 45 m mr# 69.40	3.4 4.8 12.0 45 165.86	4.0 9.0 45 331.72
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	94 Longitudinal emittance (off. * 4oz) 95 Longitudinal emittance (off. * 4oz) 96 Injection bucket area 97 Ejection bucket area 98 Bucket area reduction factor	6 ¹ 0 [0 A _{not} [0	(vs] 0.0257.5 (vs] 0.079 (vs] 0.62 (vs] 1.37 - 0.172	MeV m 0.025 0.079 1.01 1.56 0.172	0.079 1.40 1.97
Acc. field in RF cavity [MV/m]	30	30	30	Porizontal betatron tune Vertical trained beta	fais [k	- m] 10 m] 10 Hz] 76.33 Hz] 34.20	10 10 25.07 16.22	10
Max. RF voltage for ϕ_s =45° [GV]	20.9	11.2	16.1	15 Injection synchrotron tune Q		1.52 0.68	0.50	0.52

Parameters and tools: RF – The TESLA cavity

Common f_{RF}, from H. Damerau's talk & citation from design report:

Frequency	Accelerator	Remark			
352 MHz	LEP	Moderate gradient			
400 MHz	LHC	Moderate gradient			
800 MHz	ERL, FCC	Alternative for μRCS			
1.3 GHz	TESLA, ILC, FELs (XFEL)	μRCS			
1.5 GHz	JLab-CEBAF				

f_{RF} & *h* impact bucket area and gradient!

 $A_B(t) = \frac{8\sqrt{2}}{2\pi h f_{rev}} \cdot \sqrt{\frac{E(t)V_{RF}(t)}{\pi h \eta}} \quad \sim 1/h^{3/2}$

3.2.1 Choice of frequency

The losses in a microwave cavity are proportional to the product of conductor area and surface resistance. For a given length of a multicell resonator, the area scales with 1/f while the surface resistance of a superconducting cavity scales with f^2 for $R_{\rm BCS} \gg R_{\rm res}$ and is independent of f for $R_{\rm BCS} \ll R_{\rm res}$. At an operating temperature T = 2 K the BCS term dominates above 3 GHz and hence the losses grow linearly with frequency whereas for frequencies below 300 MHz the residual resistance dominates and the losses grow with 1/f. To minimize the dissipation in the cavity wall one should therefore select f in the range 300 MHz to 3 GHz.

Cavities in the 350 to 500 MHz regime are in use in electron-positron storage rings. Their large size is advantageous to suppress wake field effects and higher order mode losses. However, for a linac of several 10 km length the niobium and cryostat costs for these bulky cavities would be prohibitive, hence a higher frequency has to be chosen. <u>Considering material costs</u> f = 3 GHz might appear the optimum but there are compelling arguments for choosing about half this frequency.

- The wake fields losses scale with the second to third power of the frequency ($W_{\parallel} \propto f^2$, $W_{\perp} \propto f^3$). Beam emittance growth and beam-induced cryogenic losses are therefore much higher at 3 GHz.
- The f^2 dependence of the BCS resistance sets an upper limit⁵ of about <u>30 MV/m at 3 GHz</u>, hence choosing this frequency would definitely preclude a possible upgrade of TESLA to 35–40 MV/m [17].

The choice for 1.3 GHz was motivated by the availability of high power klystrons.

Phys. Rev. ST Accel. Beams 3, 092001, 2000

 \rightarrow 1.3 GHz TESLA cavity as base for muon collider RCS

Parameters and tools: RF – The TESLA cavity

- Studies are based on the 1.3 GHz Tesla cavity (design report: Phys. Rev. ST Accel. Beams 3, 092001, 2000)
 - \rightarrow see <u>talk</u> by A. Yamamoto
- Relevant beam parameter
 - Bunch population 2.54x10¹², \mathcal{E}_{L} =0.01 eVs \rightarrow large intensity effects
 - Bunch current 20.4 / 18.8 / 10.0 mA \rightarrow 2x430 kW per cavity
 - **700 / 374 / 532 cavities** in ring, distributed over *n*_{RF} RF stations (with 30 MV/m accelerating gradient)
 - Synchronous phase 45° (above transition: γ_{tr} = 20.41, 600 < γ < 14200
- TESLA Cavity parameter (9 cells, L=1.06 m):
 - $f_{\rm RF}$ = 1.3 GHz \rightarrow harmonic number h = 25957 to 46367
 - *R***/Q = 518** Ω, total *R*_s = 306 GΩ
 - Gradient 30 MV/m
 - $Q_{L} = 2.2e6$ (for beam loading compensation with $\Delta f = 320 \text{ Hz}$)

	Table 2: TTF cavity design p	arameters. ^a
ſ	type of accelerating structure	standing wave
Ī	accelerating mode	TM_{010} , π mode
Ì	fundamental frequency	1300 MHz
Ì	design gradient E_{acc}	25 MV/m
Ī	quality factor Q_0	$> 5 \cdot 10^9$
[active length L	1.038 m
ľ	number of cells	9
Ī	cell-to-cell coupling	1.87 %
Ī	iris diameter	70 mm
Ī	geometry factor	270 Ω
Ī	R/Q	518 Ω
Ì	$E_{\text{peak}}/E_{\text{acc}}$	2.0
Ī	$B_{\rm peak}/E_{\rm acc}$	4.26 mT/(MV/m)
Ī	tuning range	\pm 300 kHz
Ì	$\Delta f / \Delta L$	315 kHz/mm
Ì	Lorentz force detuning at 25 MV/m	$\approx 600 \text{ Hz}$
Ī	Q_{ext} of input coupler	$3 \cdot 10^{6}$
))[cavity bandwidth at $Q_{\text{ext}} = 3 \cdot 10^6$	430 Hz
1	RF pulse duration	$1330 \ \mu s$
[repetition rate	5 Hz
[fill time	$530 \ \mu s$
Ī	beam acceleration time	$800 \ \mu s$
Ī	RF power peak/average	208 kW/1.4 kW
Ì	number of HOM couplers	2
Ì	cavity longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z = 0.7 \text{ mm}$	10.2 V/pC
Ī	cavity transversal loss factor \mathbf{k}_{\perp} for $\sigma_z = 0.7 \text{ mm}$	15.1 V/pC/m
Ī	parasitic modes with the highest impedance : type	TM ₀₁₁
	$\pi/9$ $(R/Q)/$ frequency	$80 \Omega/2454 MHz$
	$2\pi/9$ $(R/Q)/$ frequency	67 Ω/2443 MHz
Ī	bellows longitudinal loss factor \mathbf{k}_{\parallel} for $\sigma_z=0.7~\mathrm{mm}$	1.54 V/pC
[bellows transversal loss factor \mathbf{k}_\perp for $\sigma_z=0.7~\mathrm{mm}$	1.97 V/pC/m

From design report

Studies & BLonD code

(Beam Longitudinal Dynamics code)

- <u>BLonD</u>: macro-particle tracking code, developed at CERN since 2014
- Links: documentation and github
- MuC-specific to multiple RF stations & muon decay
- Using the <u>BLonD</u> code to observe effects of
 - Short-range wakefields
 - Fundamental beam loading
 - Synchrotron tune *Q*_s between RF stations
- First studies with only one bunch, 2nd to follow

Outline

- The TESLA cavity and RCS parameter
- Intensity effects & longitudinal beam dynamics:

Short-range wakefield and beam loading compared to the cavity voltage

- Synchrotron tune & Number of RF stations versus emittance
- Emittance evolution during the acceleration stages
- Outlook and Summary

Induced voltages: Short-range wakefields

30

25

20

10

W_L(V/pC/m) 15 - fit

precise equation

Based on K. Bane et al., 'Calculation of the short-range longitudinal wakefields in the NLC linac', ICAP98, 1998

$$W_L \approx \frac{Z_0 c}{\pi a^2} \exp\left(\frac{2\pi \alpha^2 L^2 s}{a^2 g}\right) \operatorname{erfc}\left(\frac{\alpha L}{a} \sqrt{\frac{2\pi s}{g}}\right) [s \operatorname{small}]$$
(3)

One can approximate this by a semi-analytically expression, valid for small s and s/L < 0.15:

Short-range wakefields

Simulations for RCS1 (63 \rightarrow 314 GeV), $n_{\rm RF}$ = 48

- Initial mismatch due to assumption of continuous synchrotron motion in matching routine \rightarrow Improves with a higher $n_{\rm RF}$ (see following slides)
- Induced voltage from the short-range wakefield: 1.5 MV per cavity, i.e., also 1.5 MV/m
- Total induced voltage per turn is around 5% of $V_{\rm acc}$

Induced voltages: Fundamental Beam loading

- Simulations for RCS1 (63 \rightarrow 314 GeV), $n_{\rm RF}$ = 48, with induced voltage from fundamental mode beam loading, single turn, no short-range wakefields
- Induced voltage from beam loading for a single turn is similar, 1.5 MV per cavity (confirmed by simulations from A. Grudiev, see <u>this</u> presentation), with similar effects

R	eminder: resonator parameters
•	Gradient in cavity: 30 MV/m
•	<i>L</i> =1.04 m
•	<i>R</i> /Q = 518 Ω
•	∆f = 320 Hz
•	$Q_{L} = 2.2e6$

• Note: So far for a single turn only, multi-turn implementation to follow

Induced voltages: both contributions

 Both effects combined: total induced voltage in a cavity is around 2.2 MV per cavity / per meter, i.e. 10-11% of the RF voltage

Outline

- The TESLA cavity and RCS parameter
- Intensity effects & longitudinal beam dynamics:

Short-range wakefield and beam loading compared to the cavity voltage

- Synchrotron tune & Number of RF stations versus emittance
- Emittance evolution during the acceleration stages
- Outlook and Summary

- 1- 2

Number of synchrotron oscillations per turn:

$$Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta e V_{\rm RF} \cos\phi_{\rm S}}{2\pi E \beta^2}} \propto \sqrt{V_{\rm RF} \cos\phi_{\rm S}}$$

- Stable synchrotron oscillations and phase focusing only for Q_s << 1/π (T. Suzuki, <u>KEK Report 96-10</u>)
 - \rightarrow RCSs exceed this limit: 0.3 < Q_s < 1.5
 - → Several longitudinal kicks per turn for small Q_s between stations
 - \rightarrow Distribute RF system over $n_{\rm RF}$ sections
- Advantageous also for counter-rotating beams!
 - $\underline{n_{\text{RF}}}$ is an important quantity to determine!

Why not choosing a high $n_{\rm RF}$ to fulfil $Q_{\rm s} \ll 1/\pi$?

- High $n_{\rm RF} \rightarrow$ smaller quadrupole-like oscillations caused by discrete energy steps and resulting mismatching
- **BUT:** higher $n_{\rm RF}$ results in higher construction / cooling / cryogenics and powering costs, even though the number of cavities is constant and defined by ΔE per turn
- $\textbf{\textbf{\rightarrow}}$ Determine emittance growth using BLonD, also as a function of n_{RF} as

Why not choosing a high $n_{\rm RF}$ to fulfil $Q_{\rm s} \ll 1/\pi$?

- High $n_{\rm RF} \rightarrow$ smaller quadrupole-like oscillations caused by discrete energy steps and resulting mismatching
- BUT: higher n_{RF} results in higher construction / cooling / cryogenics and powering costs, even though the number of cavities is constant and defined by ∆E per turn
- $\textbf{\rightarrow}$ Determine emittance growth using BLonD, also as a function of n_{RF} as

Results for each RCS, with and without induced voltage / intensity effects:

RCS1

Standard deviation measure for bunch oscillations:

No improvement in emittance growth for $n_{\text{RF}} > 48$ Minimum $n_{\text{RF}} > 24$ RF stations for RCS1, e.g. 32.

Results for each RCS and with and without induced voltage / intensity effects:RCS1, $\Delta\epsilon$ (std)RCS2, $\Delta\epsilon$ (std)RCS3, $\Delta\epsilon$ (std)

Outline

- The TESLA cavity and RCS parameter
- Intensity effects & longitudinal beam dynamics:

Short-range wakefield and beam loading compared to the cavity voltage

- Synchrotron tune & Number of RF stations versus emittance
- Emittance evolution during the acceleration stages
- Outlook and Summary

Beam transport though the RCS chain: Evolution of bunch parameter

How do the bunch length, energy spread and emittance evolve when propagating the bunch through not one, but all RCS?

Beam transport though the RCS chain: Evolution of bunch parameter

How do the bunch length, energy spread and emittance evolve when propagating the bunch through not one, but all RCS?

All RCS with $n_{\rm RF} = 48$

Final bunch parameter:

 $4\pi\sigma_t\sigma_E$ < 0.19 eVs (190MeVm)

 $4\sigma_t$ = 0.08 ns σ_E = 0.6 GeV

Factor 2-3 above nominal, but improvement with better matching

• Unmatched beam main problem, emittance growth 90%

Outlook – Follow ups

Parameter to be optimized for the construction point-of-view:

- Decay rate: RF voltage and ramp rates better distributed to e.g. lose more muons earlier and less later. Matching improved?
- Synchronous phase ⇔ higher voltage ⇔ emittance budget
- Beam optics, see e.g. <u>talk</u> by A. Chancé before
- Magnet's ramping functions: See my talk tomorrow at 14:20
- Multi-turn wakefields and resistive-wall impedance will have an effect, which must be included
- Wakefields of the counter-rotating bunch remains open question

F. Batsch

Summary

- 1.3 GHz TESLA Cavity suited for muon acceleration in the RCSs, but not all effects studied
- High intensities: Short-range wakefields and beam loading cause induced voltage ~2 MV/m per cavity, or 10% of V_{acc}, but do not harm beam transport due to the high Q_s and high V_{RF}
- Beam is transported with % level emittance growth in each RCS, if n_{RF} high enough
- <u>A large number of RF</u> stations on the order n_{RF} = 32 needed to ensure a sufficiently low synchrotron tune between the stations

