

International **JON Collider** ollaboration

RF Parameter Choices and Longitudinal Stability

F. Batsch, H. Damerau, I. Karpov

Acknowledgements: David Amorim, Scott Berg, Fulvio Boattini, Luca Bottura, Christian Carli, Antoine Chancé, Alexej Grudiev, Elias Metral, Daniel Schulte

Presented on the 1st Muon Collider Annual Meeting, CERN, 2022

Outline

- **The TESLA cavity and RCS parameter**
- **Intensity effects & longitudinal beam dynamics:**

Short-range wakefield and beam loading compared to the cavity voltage

- **Synchrotron tune & Number of RF stations versus emittance**
- **Emittance evolution during the acceleration stages**
- **Outlook and Summary**

2

 $\frac{1}{2}$

- **Hybrid RCSs have intersecting normal conducting (NC) and superconducting (SC) magnets**
- **Studies presented aim to determine the RF (cavity) and lattice parameters (number of RF stations, momentum compaction factor,…)** H. Damerau

Parameters and tools: General parameter

▪ **Detailed parameter table:<https://cernbox.cern.ch/index.php/s/I9VpITncUeCBtiz>**

Parameters and tools: RF – The TESLA cavity

■ Common f_{RF} , from H. Damerau's talk & citation from design report:

▪ *fRF* **&** *h* **impact bucket area and gradient!**

 $A_B(t) = \frac{8\sqrt{2}}{2\pi h f_{ren}} \cdot \sqrt{\frac{E(t)V_{RF}(t)}{\pi h\eta}} \sim 1/h^{3/2}$

3.2.1 Choice of frequency

The losses in a microwave cavity are proportional to the product of conductor area and surface resistance. For a given length of a multicell resonator, the area scales with $1/f$ while the surface resistance of a superconducting cavity scales with f^2 for $R_{\rm RCS}\gg R_{\rm res}$ and is independent of f for $R_{\text{RCS}} \ll R_{\text{res}}$. At an operating temperature $T = 2$ K the BCS term dominates above 3 GHz and hence the losses grow linearly with frequency whereas for frequencies below 300 MHz the residual resistance dominates and the losses grow with $1/f$. To minimize the dissipation in the cavity wall one should therefore select f in the range 300 MHz to 3 GHz.

Cavities in the 350 to 500 MHz regime are in use in electron-positron storage rings. Their large size is advantageous to suppress wake field effects and higher order mode losses. However, for a linac of several 10 km length the niobium and cryostat costs for these bulky cavities would be prohibitive, hence a higher frequency has to be chosen. Considering material costs $f = 3 \text{ GHz might appear the optimum but there are compelling arguments for choosing about}$ half this frequency.

- The wake fields losses scale with the second to third power of the frequency $(W_{\parallel} \propto f^2)$, $W_{\perp} \propto f^3$). Beam emittance growth and beam-induced cryogenic losses are therefore much higher at 3 GHz.
- The f^2 dependence of the BCS resistance sets an upper limit⁵ of about 30 MV/m at 3 GHz, hence choosing this frequency would definitely preclude a possible upgrade of TESLA to $35 - 40$ MV/m [17].

The choice for 1.3 GHz was motivated by the availability of high power klystrons.
[Phys. Rev. ST Accel. Beams 3, 092001, 2000](https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.3.092001)

5

→ 1.3 GHz TESLA cavity as base for muon collider RCS

Parameters and tools: RF – The TESLA cavity

- From desian repor
- **Studies are based on the 1.3 GHz Tesla cavity (design report: [Phys. Rev. ST Accel. Beams 3, 092001, 2000](https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.3.092001))**
	- → **see [talk](https://indico.cern.ch/event/1175126/contributions/5032967/) by A. Yamamoto**
- **Relevant beam parameter**
	- **•** Bunch population 2.54x10¹², ε _L=0.01 eVs → large intensity effects
	- **Bunch current 20.4 / 18.8 / 10.0 mA** → **2x430 kW per cavity**
	- **700 / 374 / 532 cavities** in ring, distributed over n_{RF} RF stations (with 30 MV/m accelerating gradient)
	- **Synchronous phase 45°** (above transition: $\gamma_{tr} = 20.41$, 600 < γ < 14200)
- **TESLA Cavity parameter (9 cells, ^L=1.06 m)**:
	- f_{RF} = 1.3 GHz \rightarrow harmonic number h = 25957 to 46367
	- $R/Q = 518 \Omega$, total $R_s = 306 \text{ G}\Omega$

- **Gradient 30 MV/m**
- Q_i = 2.2e6 (for beam loading compensation with $\Delta f = 320$ Hz)

From design report

Studies & BLonD code

(Beam Longitudinal Dynamics code)

F. Batsch

- **[BLonD:](https://blond.web.cern.ch/) macro-particle tracking code, developed at CERN since 2014**
- **Example 15 Links:** [documentation](http://blond-admin.github.io/BLonD/) and [github](https://github.com/blond-admin/BLonD)
- **MuC-specific to multiple RF stations & muon decay**
- **Using the [BLonD](https://blond.web.cern.ch/) code to observe effects of**
	- **Short-range wakefields**
	- **Fundamental beam loading**
	- **Synchrotron tune** Q_5 **between RF stations**
- **First studies with only one bunch, 2nd to follow**

Outline

- **The TESLA cavity and RCS parameter**
- **Intensity effects & longitudinal beam dynamics:**

Short-range wakefield and beam loading compared to the cavity voltage

- **Synchrotron tune & Number of RF stations versus emittance**
- **Emittance evolution during the acceleration stages**
- **Outlook and Summary**

8

 $\frac{1}{2}$

Induced voltages: Short-range wakefields

30

25

20

ำ0

W_L(V/pC/m) 15 $-$ fit

precise equation

60

Based on K. Bane et al., '[Calculation of the short-range longitudinal](https://inspirehep.net/files/246565fbf4498a1246965a1e761a2b9d) wakefields in the NLC linac', ICAP98, 1998

$$
W_L \approx \frac{Z_0 c}{\pi a^2} \exp\left(\frac{2\pi \alpha^2 L^2 s}{a^2 g}\right) \text{erfc}\left(\frac{\alpha L}{a} \sqrt{\frac{2\pi s}{g}}\right) \text{ [s small]}
$$
\n(3)

One can approximate this by a semi-analytically expression, valid for small ^s and s/L < 0.15:

Short-range wakefields

Simulations for RCS1 (63 \rightarrow 314 GeV), n_{RF} = 48

- **Initial mismatch due to assumption of continuous synchrotron motion in matching routine** \rightarrow **Improves with a higher** n_{RF} **(see following slides)**
- **Induced voltage from the short-range wakefield: 1.5 MV per cavity, i.e., also 1.5 MV/m**
- **Total induced voltage per turn is around 5% of Vacc**

Induced voltages: Fundamental Beam loading

- Simulations for RCS1 (63 \rightarrow 314 GeV), n_{RF} = 48, with induced voltage from **fundamental mode beam loading, single turn, no short-range wakefields**
- **Induced voltage from beam loading for a single turn is similar, 1.5 MV per cavity (confirmed by simulations from A. Grudiev, see [this](https://indico.cern.ch/event/1135879/contributions/4765848/attachments/2408128/4121102/20220315_ShortRangeWakes4muonRCS.pdf) presentation), with similar effects**

 $Q_i = 2.2e6$

Induced voltages: both contributions

Both effects combined: total induced voltage in a cavity is around 2.2 MV per cavity / **per meter, i.e. 10-11% of the RF voltage**

Outline

- **The TESLA cavity and RCS parameter**
- **Intensity effects & longitudinal beam dynamics:**

Short-range wakefield and beam loading compared to the cavity voltage

- **Synchrotron tune & Number of RF stations versus emittance**
- **Emittance evolution during the acceleration stages**
- **Outlook and Summary**

13

 -0.1

▪ **Number of synchrotron oscillations per turn:**

$$
Q_{\rm S} = \frac{\omega_{\rm S}}{\omega_0} = \sqrt{-\frac{h\eta eV_{\rm RF}\cos\phi_{\rm S}}{2\pi E\beta^2}} \propto \sqrt{V_{\rm RF}\cos\phi_{\rm S}}
$$

- **Stable synchrotron oscillations and phase focusing only for** $Q_s \ll 1/\pi$ **(T. Suzuki, [KEK Report 96-10](https://inspirehep.net/literature/423542))**
	- \rightarrow **RCSs exceed this limit: 0.3 <** $Q_{\rm s}$ **< 1.5**
	- → Several longitudinal kicks per turn for small Q_s between **stations**
	- **Distribute RF system over** n_{RF} **sections**
- **Advantageous also for counter-rotating beams!**
- → *n***RF is an important quantity to determine!**

 k_{r} From:

F. Batsch

*Why not choosing a high n*_{pF} *to fulfil Q*_s $<< 1/\pi$?

- High n_{RF} → smaller quadrupole-like oscillations caused by discrete energy steps and resulting mismatching
- **BUT:** higher n_{RF} results in higher construction / cooling / cryogenics and powering costs, even though the number of cavities is constant and defined by ΔE per turn
- \rightarrow Determine emittance growth using BLonD, also as a function of n_{RF} as

*Why not choosing a high n*_{pF} *to fulfil Q*_s $<< 1/\pi$?

- High n_{RF} → smaller quadrupole-like oscillations caused by discrete energy steps and resulting mismatching
- **BUT:** higher n_{RF} results in higher construction / cooling / cryogenics and powering costs, even though the number of cavities is constant and defined by ΔE per turn
- \rightarrow Determine emittance growth using BLonD, also as a function of n_{RF} as

Results for each RCS, with and without induced voltage / intensity effects:

RCS1 RCS1 Standard deviation measure for bunch oscillations:

17

No improvement in emittance growth for n_{RF} >48 **Minimum** n_{RF} **>24 RF stations for RCS1, e.g. 32.**

Results for each RCS and with and without induced voltage / intensity effects: $RCS1, \Delta\varepsilon$ (std) $RCS2, \Delta\varepsilon$ (std) $RCS3, \Delta\varepsilon$ (std)

Outline

- **The TESLA cavity and RCS parameter**
- **Intensity effects & longitudinal beam dynamics:**

Short-range wakefield and beam loading compared to the cavity voltage

- **Synchrotron tune & Number of RF stations versus emittance**
- **Emittance evolution during the acceleration stages**
- **Outlook and Summary**

19

 $\frac{1}{2}$

Beam transport though the RCS chain: Evolution of bunch parameter

How do the bunch length, energy spread and emittance evolve when propagating the bunch through not one, but all RCS?

Beam transport though the RCS chain: Evolution of bunch parameter

How do the bunch length, energy spread and emittance evolve when propagating the bunch through not one, but all RCS?

All RCS with n_{RF} **= 48**

Final bunch parameter:

 $4\pi\sigma_{\text{t}}\sigma_{\text{E}}$ < 0.19 eVs (190MeVm)

 $4\sigma_t = 0.08$ ns $\sigma_E = 0.6$ GeV

Factor 2-3 above nominal, but improvement with better matching

21

Unmatched beam main problem, emittance growth 90%

→ **Optimize voltages** ≙ **acc. time** ≙ **decay rate between RCS** ²¹ F. Batsch

Outlook – Follow ups

▪ **Parameter to be optimized for the construction point-of-view:**

- **Decay rate:** RF voltage and ramp rates better distributed to e.g. lose more muons earlier and less later. **Matching improved?**
- **Synchronous phase** ⇔ higher voltage ⇔ emittance budget
- **Exam optics**, see e.g. [talk](https://indico.cern.ch/event/1175126/contributions/5025342/) by A. Chance before
- **Magnet's ramping functions:** See my talk tomorrow at 14:20
- **Multi-turn wakefields and resistive-wall impedance will have an effect, which must be included**

F. Batsch

Wakefields of the counter-rotating bunch remains open question

Summary

- **1.3 GHz TESLA Cavity suited for muon acceleration in the RCSs, but not all effects studied**
- **High intensities: Short-range wakefields and beam loading cause induced** voltage ~2 MV/m per cavity, or 10% of V_{acc} , but do not harm beam transport due **to the high** $Q_{\rm s}$ **and high** $V_{\rm pfs}$
- **Beam is transported with % level emittance growth in each RCS, if** n_{RF} **high enough**
- **A large number of RF stations on the order** n_{BF} **= 32 needed to ensure a sufficiently low synchrotron tune between the stations**

