

RF cycling considerations

F. Batsch, H. Damerau, I. Karpov

Acknowledgements: David Amorim,
Fulvio Boattini, Luca Bottura,
Christian Carli, Antoine Chancé,
Alexej Grudiev, Elias Metral,
Daniel Schulte

Presented on the 1st Muon Collider Collaboration Meeting, CERN, 2022

Outline

- **RCS** and magnet parameter
- Linear and non-linear ramping considerations
- Consequences of non-linear ramping on the accelerator performance (decay rates, RF requirements)
- Simulations of muon acceleration with nonlinear ramping
- Summary

Introduction

• Chain of rapid cycling synchrotrons, counter-rotating μ^+/μ^- beams \rightarrow 63 GeV \rightarrow 314 GeV \rightarrow 750 GeV \rightarrow 1.5 TeV (\rightarrow 5 TeV)

Details on RCS & RF: See talk by H. Damerau

 Hybrid RCSs have intersecting normal conducting (NC) and superconducting (SC) magnets

H. Damerau

Parameters and tools: General parameter

Detailed parameter table: https://cernbox.cern.ch/index.php/s/l9VplTncUeCBtiz

	RCS1→314 GeV	RCS2→750GeV	RCS3→1.5TeV	
Circumference, $2\pi R$ [m]	5990	5590	10700	
Energy factor, E_{ei}/E_{inj}	5.0	2.4	2.0	
Repetition rate, f _{rep} [Hz]	5 (asym.)	5 (asym.)	5 (asym.)	
Number of bunches	1μ+, 1μ ⁻	1μ+, 1μ ⁻	1μ+, 1μ ⁻	
Bunch population	2.5E12	2.3E12	2.2E12	
Survival rate per ring	90%	90%	90%	
Acceleration time [ms]	0.34	1.04	2.37	
Number of turns	17	55	66	
Energy gain per turn, ∆E [GeV]	14.8	7.9	11.4	
Acc. gradient for survival [MV/m]	2.4	1.3	1.1	
Acc. field in RF cavity [MV/m]	30 (TESLA)	30	30	
Ramp rate $\dot{B}_{nc}[kT/s]$	4199	3281	(1518)	

3				Stage 1		Stage 2		Stage 3
	Basic data	Symbol	Unit	Value	Details	Value	Details	Value
	Particles	-		ш		и	bennes	ш
	Costs		ME					
	Type			RCS		hybrid RCS		hybrid RCS
	- Ab-c					.,,		injuries (italia
d	Dynamics							
	Acceleration time	T	[ms]	0.34		1.09704595		2
	Injection energy	E	[MeV]/u	63000		313830		7500
	Ejection energy	E,	[MeV]/u	313830 de	fined by st			15000
	Energy ratio	E./E.	[mexpu	4.98	inieu by ir	2.39		2.5000
	Momentum at e.							
		p/c	MeV/c	63106		313935		7501
	Momentum at e	p/c	MeV/c	313935		750106		15001
	Number of turns	D _{tem}		17		55		
2 1	Planned Survival rate	N _a IN _{ed}	-	0.9		0.9		
	Total survival rate	N_IN.		0.9		0.81		0.7
9 /	Accel. Gradient, linear for survival	G	[MV/m]	2.44		1.33		1.
	Required energy gain per turn	ΔE	[MeV]	14755		7930		113
			(many					
2	Transition gamma	Υ,		20.41		20.41		~
	Injection relativistic mass factor	Y _{NI}		597		2971		70
4	Ejection relativistic mass factor	Yes	-	2971		7099		141
5	Injection v/c	P _{ed}	96	0.9999986		0.999999943		0.99999999
	Ejection v/c	Bu	96	0.999999943		0.9999999901		0.99999999
7	Election 410			0.0000000		U.2333333334		0.0000000
	Parameter Classical RCS							
	Radius	R	[m]	953.3		953.3		170
	Circumference	2x8	[m]	5990		5990		107
	Circumference Ratio	R_/R	[m]			1		1
	Pack fraction	?	- :	0.61		0.61		0.6
				581.8				
	Bend radius	P ₅	m			581.8		1070
	Tot. straight section length	L,,,	[m]	2334.7		2335.7		397
5	Injection bending field (average)	Bes	m	0.36		1.80		2.
5	RE							
6	Systems		-	TESLA		TESLA		TESI
7)	Main RF frequency	f _{RE}	[MHz]	1300		1300		13
8 1	Harmonic number	h		25957		25957		463
9	Revolution frequency ej	f _{oor}	[kHz]	50.08		50.08		28.
	Revolution period	Trev	[µs]	20.0		20.0		35
	Max RF voltage	V_	[GV]	20.87		11.22		16.
	Max RF power	Per	[MW]	20.00				
	RF Filling factor		[]	0.4		0.4		0.
	Number RF stations			Around 50		Around 50		Around
	Cavities			9-cell		9-cell		9-0
	Number of cavities	?		696		374		5
	Peak Impedance		[Ω]	- 200		314		
	Gradient in cavity	ΔE/L	[MV/m]	30		30		
	Average energy gain per total straight	ΔE/L	[MeV/m]	6.3		3.4		- 1
	Accelerating field per total straight	ΔE/L	[MeV/m]	8.9		4.8		
	Accelerating field gradient, with FF	ΔE/L	[MV/m]	22.3		12.0		
	Stable phase	•,	[*]	45		45		
	Conversion factor mm mrad - eVs		Vs/mm mra			165.86		331.
	Longitudinal emittance (σE * 4σz)	§*,	[eVs]	0.0257.5	MeV m	0.025		0.0
	Longitudinal emittance (phase space area)	gr.	[eVs]	0.079		0.079		0.0
6	Injection bucket area	Ann	[eVs]	0.62		1.01		1
7	Ejection bucket area	Ann	[eVs]	1.37		1.56		1
	Bucket area reduction factor	AJA	-	0.172		0.172		0.1
	Horizontal betatron tune	Q						
0 1	Vertical betatron tune	Q.	- 1					
		βh	[m]	10		10		
100			[m]	10		10		
10 1	Average horizontal Twiss beta							
10 1	Average vertical Twiss beta	βv		70.0				
00 Y 01 A 02 A	Average vertical Twiss beta Injection synchrotron frequency	fsis	[kHz]	76.33		25.07		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Average vertical Twiss beta Injection synchrotron frequency Ejection synchrotron frequency	f _{s.is}		34.20		16.22		10.
10 1 10 1 10 1 10 1 10 1	Average vertical Twiss beta Injection synchrotron frequency	fsis	[kHz]					14. 10. 0.

Hybrid RCS magnet layout

- SC magnets provide high average B_{sc}, but not fast ramping → fixed-field
- NC magnets required for fast ramping within ± B_{nc}
- Large ramp rates of kT/s
- Beam orbit not constant during acceleration

$$\rightarrow f_{rev} \neq const. \rightarrow f_{RF}$$
 tuning to be provided

see e.g. talk by A. Chancé

Hybrid RCS magnet layout

Choice of field strengths:

- B_{nc}= ± 1.8 T, feasible with current technique,
 2.0+ T would be beyond saturation and require special materials
- B_{sc} = 10 T: limit of current niobium-titanium technologies, 16 T only reachable with niobium-tin (Nb3Sn), significantly more expensive, 16 T can be kept as option

Outline

- RCS and magnet parameter
- Linear and non-linear ramping considerations
- Consequences of non-linear ramping on the accelerator performance (decay rates, RF requirements)
- Simulations of muon acceleration with nonlinear ramping
- Summary

Ramping considerations

- → Optimization problem between magnet powering and RF
- Linear ramping \rightarrow constant V_{RF} \rightarrow simplest RF solution, best for μ
- However: no RF requirement for beam transport!
- Non-linear ramping → decrease peak power

 magnet powering costs significantly (see G. Brauchli, D. Aguglia, F. Boattini here)
- $B \propto E$ defines all dynamics!

Non-linear ramping

- Sinusoidal ramp function → performance decrease of 50%, see H. Damerau, I. Karpov, MC RF WG meeting #3
- Optimum: near linear ramp with reasonable technical effort
- Approximated linear ramping by e.g. natural resonant discharge of two harmonics and active filter
- → Peak power lowered, see talk by F. Boattini

Non-linear ramping

- Sinusoidal ramp function → performance decrease of 50%, see H. Damerau, I. Karpov, MC RF WG meeting #3
- **Optimum**: near linear ramp with reasonable technical effort
- → Approximated linear ramping by e.g. natural resonant discharge of two harmonics and active filter
- → Studied possible ramping function

Example for RCS3, ±1.8 T normal conducting, 2.4 ms acceleration time, but equal trend line for the other RCSs

Outline

- RCS and magnet parameter
- Linear and non-linear ramping considerations
- Consequences of non-linear ramping on the accelerator performance (decay rates, RF requirements)
- Simulations of muon acceleration with nonlinear ramping
- Summary

Acceleration with non-linear ramping

Bunch energies over time for RCS3, expressed by their γ functions:

$$\gamma_{harm}(t) = \gamma_{inj} + (\gamma_{ej} - \gamma_{inj}) \cdot \frac{1}{2} \left(\frac{B_{harm}(t)}{B_{ej}} + 1 \right)$$

 $\gamma(t)$ follow the same trend as B(t)!

Acceleration with non-linear ramping

Ramping does not influence survival rate:

$$\frac{N(t)}{N_0} = \exp\left(-\frac{1}{\tau_{\mu}} \int_0^{\tau_{acc}} \frac{dt}{\gamma(t)}\right)$$

Acc. gradient with non-linear ramping

• V_{acc} and G_{acc} must be increased by 12% to achieve the same acceleration time $\Leftrightarrow \neq$ factor of two as for a sine-like ramp:

Average gradient over ring for survival

$$G_{harm}(t) = \frac{(\gamma_{ej} - \gamma_{inj})}{2} \cdot \frac{m_{\mu}}{c} \left(\frac{\dot{B}_{harm}(t)}{B_{ej}} \right)$$

Acc. gradient with non-linear ramping

- Cavity filling time $(2Q_{L}/\omega) = 0.5$ ms similar to $t_{acc} < 2.4$ ms $_{(f = 1.3 \text{ GHz}, Q_{L} = 2.2e6)}$
- → Sweep synchrotron phase $V = V_{RF} \cdot \sin(f_s)$, demonstrated in simulations with fixed V_{RF} for different G_{acc}
- → Example for RCS3, no intensity effects
- → Bunch transported!

$$\phi_s(t) = \arcsin\left(\frac{\dot{B}_{harm}(t)}{\dot{B}_{lin}(t)} \cdot \sin\phi_{s,0}\right)$$

Limitations on the ramping function

- Sweeping of $\phi_{\rm s}$ or $G_{
 m acc}$ raises the question of limitations in ramping B
- → Consider bucket area deformation and longitudinal emittance budget
- The adiabaticity factor ε must fulfil:

→ Evaluation with BLonD simulations

Outline

- RCS and magnet parameter
- Linear and non-linear ramping considerations
- Consequences of non-linear ramping on the accelerator performance (decay rates, RF requirements)
- Simulations of muon acceleration with nonlinear ramping
- Summary

Studies & BLonD code

(Beam Longitudinal Dynamics code)

- **BLonD**: macro-particle tracking code, developed at CERN since 2014
- Links: documentation and github
- MuC-specific to multiple RF stations & muon decay
- First studies with only one bunch,

Limitations on the ramping function

■ BLonD simulation for RCS1 (63→314 GeV), $n_{\rm RF}$ = 48 RF, no intensity effects stations to observe effect of ramping $A_B(t) = \frac{8\sqrt{2}}{2\pi h f_{ref}} \cdot \sqrt{\frac{E(t)V_{RF}(t)}{\pi h \eta}} \cdot \alpha_B(t)$

0.15 0.1 0.05 0.05 0.15 t [ms] Peaks not physical, caused by B(t)!

Beam transported with approx. 3% emittance growth!

Transport trough all RCS

■ BLonD simulation for all RCS (63 \rightarrow 1500 GeV), $n_{\rm RF}$ =48 RF, no intensity

effects stations to observe effect of ramping

The beam suffers from mismatch, as seen for linear ramping (see <u>presentation</u> "RF parameter choices and longitudinal stability")

Consequences & Follow up

- Observed small effect of nonlinear ramping on bunch
- → Careful design of ramping function and RF voltage for matching between RCS required
- Bucket area and longitudinal emittance budget mainly question in RCS1
- Adiabaticity factor only an indication, final evaluation through simulations
- → Equations for bucket area and emittance allow to re-write requirements for optimized non-linear ramping functions (see talk by F. Boattini just before)

$$\varepsilon(t) = \frac{1}{2\omega_s} \left| \frac{\dot{B}_{harm}}{B_{harm}} + \frac{\frac{\dot{B}_{harm}(t)}{\dot{B}_{lin}(t)} \cdot \sin \phi_{s,0} - 4}{1 - \left(\frac{\dot{B}_{harm}(t)}{\dot{B}_{lin}(t)} \cdot \sin \phi_{s,0}\right)^2} \cdot \frac{\ddot{B}_{harm}}{\dot{B}_{lin}} \cdot \sin(\phi_{s,0}) \right| \ll 1$$
 Function of $B(t)$

Summary

- <u>Linear</u> ramping not required for optimal beam transport
- Non-linear ramping preserves accelerator performance while keeping the cavity voltage constant and sweeping ϕ_s to increase gradient G_{acc} by $\approx 12\%$
- Beam transported with %-like emittance growth in one RCS (without intensity effects)
- To follow: Implications for matching, bucket area and longitudinal emittance
 budget as a function of B with optimized ramping functions

F. Batsch

