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▪ Radiation due to neutrino beam reaching 

the earth surface

◆ Narrow radiation “cone” for a short piece 

of the machine 

◆ Showers from neutrinos interacting close to 

earth surface generate dose seen at surface

◆ Matter in front (“shielding”) does not 

help but makes situation even worse

▪ Strong increase of maximum dose with 

muon energy

◆ Cross sections about proportional to energy

◆ Typical energy per interaction of neutrino

with matter proportional to muon energy

◆ Opening of radiation cone inversely 

proportional to muon energy
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Introduction
Neutrino Radiation Issue
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▪ Consider say decay 

▪ In muon rest system: anisotropic neutrino 

distribution with known energy distribution 

▪ Lorentz boost to obtain neutrino direction and

energies in lab system (Lorentz factor   )

▪ Sum over 

◆ Both neutrino types

◆ cross sections of possible interactions 

times fraction of energy deposited per interaction in shower

▪ Gives

with                                           the ratio between the square of the neutrino energy in the 

lab and the rest system

and                                              the angular distribution of neutrinos

▪ The decay                             gives (almost) identical final result despite different 

cross sections and fractions
4

Analytical estimates 
absorbed dose per decay
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▪ Absorbed dose reasonably well 

described by Gaussian 

◆ Rms opening angle of neutrino radiation

cone of 

▪ Assuming Gaussian for the beam divergence

◆ Folding of divergence from muon decay 

process and beam divergence simple

▪ Almost suitable as source term to estimate

doses generated by neutrino interactions
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Analytical estimates 
approximation by Gaussian
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▪ Motivation: improvement and check of analytical derivations

◆ Possible widening of neutrino radiation cone due to lateral extension of shower

◆ Effective dose instead of absorbed dose

▪ Ansatz

◆ with        to convert absorbed dose    

to dose equivalent                  

◆ and      the rms radial extension of the

shower (assumed as well to be Gaussian?!)

▪ Result of fitting “by hand” to FLUKA results 

for 5 TeV muons (green lines in plot)

◆ and 

◆ Results may be different for other energies

◆ Shower extension      neglected for further 

studies (slightly pessimistic)
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FLUKA simulations of

doses due to neutrino interactions
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▪ Taking details of lattice into account: 

◆ Twiss gamma functions         and      

and derivative of dispersion 

◆ Physical rms emittances

◆ Rel. momentum spread 

▪ Extrapolation of argument of exponential

◆ Without mitigation measures gives

with      the number if muons per bunch,     the repetition rate and      the circumference
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Extrapolation to a collider lattice
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Ĵ
H

L
s
J
V

L
s

straigt section

   length Ds

s
J
H

2 =
1

6g 2
+e

H
g
H

(s) +
s
p

p
×D '(s)

æ

è

ç
ç

ö

ø

÷
÷

2

s
J
V

2 =
1

6g 2
+e

V
g
V

(s)

N
m

f
r C



▪ Divergence of muon beam neglected, peak dose rate

◆ Straight section     , using                             and               with                      the earth radius 

for beam energies around 

◆ Bending magnet – integration w.r.t using

◆ Integrated peak equivalent dose per muon beam for one year 

operation (5000 h = 18 106 s) without mitigation measures

muons per bunch,

repetition,

beam energy,

circumference and

average field
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Numerical evaluations
Simple cases 
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▪ Integrals evaluated for present (work in progress) 10 TeV com collider arc half cell 

◆ In collider mid-plane as function of       (i.e.,         ) for one year (5000 h operation)
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Numerical evaluations
equivalent dose from arc cell at 100 km 
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▪ Wobbling of machine in vertical direction – part of MAP proposal?

◆ Time-dependent mechanical deformation of ring around arc (including chromatic 

compensation, matching section and FMC arc cells

◆ High precision movement system

◆ Impact on optics?

▪ For 10 TeV com collider with 10 km circumference and say 4.8 km arcs

◆ Combination of pieces of parabola – two pieces with opposite curvature one period

◆ Say 8 periods 660 m long periods generating angles between -1 mrad and + 1 mrad

◆ Magnetic field (average) bending in vertical ±0.11 T

◆ Excursion (maximum total) ±150 mm

◆ Replaces vertical Gaussian angle distribution with rms opening of ≈0.0086 mrad by 

about rectangular distribution within ±1 mrad

=> About two order of magnitude reduction of peak dose rates
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Mitigation by “Wobbling” 

Vertical bend

±16.7 Tm 

Arc with an integer – say eight – vertical machine deformation periods



▪ Dose generated at the earth surface due to showers generated by neutrino 

interactions is a serious issue

◆ Muon decays generate narrow cone swept by bendings in bending plane

◆ In particular high doses in direction of (short) straights sections

◆ Numerical estimates based on “source term” from FLUKA simulations 

(=> Comparison with MARS results to be done?)

▪ Time-dependent vertical deformation of the whole arc proposed as mitigation 

measure

◆ For a 10 TeV com collider angle variations (linear up and down) in a range ±1 mrad

would allow to gain about two orders of magnitude

◆ To be combination with other mitigation measures 

 Collider installed deep underground with suitable positioning

 Appropriate orientation towards uncritical areas (possibly owned by facility)

▪ Feasibility to be studied

◆ High precision movement system

◆ Impact on beam dynamics in particular in chromatic compensation and matching 

sections (vertical dispersion, orbit stability …)
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Summary and Outlook


