

Neutrino Radiation for a realistic Collider

-
- G. Lerner, G. Lacerda, A. Lechner,
- K. Skoufaris …

C. Carli, C. Ahdida, D. Calzolari, Muon Collider annual meeting, 13th October 2022

Content

- **Introduction Neutrino Radiation Issue**
- **E** Analytical estimates
	- ◆ Absorbed dose per decay
	- ◆ approximation by Gaussian
- **ELUKA Simulations of doses due to neutrino interactions**
- **Extrapolation to collider lattice**
- **Mitigation by "Wobbling"**
- **E** Summary and Outlook

Introduction Neutrino Radiation Issue

Muons decay (say in

• Radiation due to neutrino beam reaching the earth surface

- ◆ Narrow radiation "cone" for a short piece of the machine
- ◆ Showers from neutrinos interacting close to earth surface generate dose seen at surface
- ◆ Matter in front ("shielding") does not help but makes situation even worse
- **Strong increase of maximum dose with** muon energy
	- ◆ Cross sections about proportional to energy
	- ◆ Typical energy per interaction of neutrino with matter proportional to muon energy
	- ◆ Opening of radiation cone inversely proportional to muon energy

Analytical estimates absorbed dose per decay

4

 $d = L_{\rm s}$ D $\mathcal{J}_{H} = L_{\rm s}$ $\left(\mathcal{J}_{H} - \hat{\mathcal{J}}\right)$

L s

L s J_{ν}

straigt section length D*^s*

(see, e.g., arXiv:physics/9908017)

 \cup ˆ *H*

 $\left(\mathcal{I}_H - \mathcal{I}_H \right)$

- **Consider say decay** $m^- \rightarrow e^- + \overline{n}_e + n$
- **.** In muon rest system: anisotropic neutrino distribution with known energy distribution
- **EXECT:** Lorentz boost to obtain neutrino direction and energies in lab system (Lorentz factor g)
- Sum over

 \prime

- ◆ Both neutrino types
- ◆ cross sections of possible interactions times fraction of energy deposited per interaction in shower

Gives
\n
$$
\Delta D = \left(0.410 \cdot 10^{-39} \frac{\text{m}^2}{\text{TeV}} \frac{E_{\mu\nu}^2}{4} \right) \frac{1}{m_u} \frac{1}{L_s^2} \frac{\left\langle E_{\nu}^2 \right\rangle}{\left\langle E_{\nu}^{i2} \right\rangle} \frac{1}{N} \frac{dN}{d\Omega} = \left(1.10 \cdot 10^{-28} \text{ Gy m}^2\right) \frac{4\gamma^4}{\pi L_s^2} \frac{1}{\left(1 + \gamma^2 \left(d/L_s\right)^2\right)^2}
$$
\n
$$
1.10 \cdot 10^{-28} \text{ Gy m}^2
$$

with $\langle E_a^2 \rangle / \langle E_a^2 \rangle = 4g^2/[1+g^2J^2]$ the ratio between the square of the neutrino energy in the lab and the rest system and $N^{-1}dN/dW = \left(g^2/\rho\right)\left/\left(1+g^2{\cal{J}}^2\right)^2\right.$ the angular distribution of neutrinos $\binom{2}{n}\big/\big\langle E_n^i\big\rangle$ $\left\langle \frac{i^2}{2} \right\rangle = 4g^2 / \left(1 + g^2 J^2 \right)^2$

• The decay $m^+ \rightarrow e^+ + n_e + \overline{n}_m$ gives (almost) identical final result despite different cross sections and fractions

Analytical estimates approximation by Gaussian

5

EXECUTE: Absorbed dose reasonably well described by Gaussian

DD
$$
\gg \left(1.10 \times 10^{-28} \text{ Gy m}^2\right) \frac{4g^4}{\rho L_s^2} \frac{1}{\left(1 + g^2 \left(d/L_s\right)^2\right)^4}
$$

$$
\approx (1.10 \cdot 10^{-28} \text{ Gy m}^2) \frac{4g^4}{\rho L_s^2} e^{-3g^2 (d/L_s)^2}
$$

- ◆ Rms opening angle of neutrino radiation cone of $r_{rms} = 1 / (\sqrt{6} g)$
- **Assuming Gaussian for the beam divergence**
	- ◆ Folding of divergence from muon decay process and beam divergence simple
- **EXT** Almost suitable as source term to estimate doses generated by neutrino interactions

FLUKA simulations of doses due to neutrino interactions

- **Motivation: improvement and check of analytical derivations**
	- ◆ Possible widening of neutrino radiation cone due to lateral extension of shower
	- ◆ Effective dose instead of absorbed dose

■ **Ansatz**
\n
$$
DH \approx D\hat{H} e^{-d^{2}/2s_{DH}^{2}}
$$
\n
$$
= w_{R,eff} \cdot (1.104 \cdot 10^{-28} \text{ Gy m}^{2}) \frac{4g^{4}}{\rho (L_{s}^{2} + 6g^{2}s_{s}^{2})} \exp \left(-\frac{d^{2}}{2(L_{s}^{2}/6g^{2} + s_{s}^{2})}\right)
$$
\n
$$
= \frac{S_{DH}}{D\hat{H}} \approx \sqrt{L_{s}^{2}/(6g^{2}) + s_{s}^{2}}
$$
\n
$$
= \frac{S_{DH}}{D\hat{H}} \approx \sqrt{L_{s}^{2}/(6g^{2}) + s_{s}^{2}}
$$
\n
$$
= \frac{S_{DH}}{D\hat{H}} \approx \frac{S_{DH}}{S_{DH}} \approx \frac{L_{s}^{2}}{2(L_{s}^{2}/6g^{2} + s_{s}^{2})}
$$
\n
$$
= \frac{S_{DH}}{D\hat{H}} \approx \frac{V_{R,eff}}{S_{DH}} \cdot (1.104 \cdot 10^{-28}) 2g^{2}/(3\rho)
$$

FLUKA studies by G. Lerner et al.

- $w_{R,eff} = 1.3 \text{ Sv/Gy}$ and $S_s = 0.12 \text{ m}$
- ◆ Results may be different for other energies
- \bullet Shower extension s_{s} neglected for further studies (slightly pessimistic)

Extrapolation to a collider lattice

 $\left(J_{H} - \hat{J}_{H} \right)$

2

7

with $N_{_{m}}$ the number if muons per bunch, f_{r} the repetition rate and \boldsymbol{C} the circumference

Numerical evaluations Simple cases

- **Divergence of muon beam neglected, peak dose rate**
	- Straight section Ds, using $C = 2\rho g E_{rm}/(c e \bar{B})$ and $L_s \gg 2R_e h$ with $R_e \gg 6.38 \times 10^6$ m the earth radius for beam energies around $dH^{\vphantom{\dagger}}_{S}$ $\frac{dH_{S}}{dt}$ = 6.85 · 10⁻²² $\frac{Sv}{T}$ T æ \setminus $\mathsf{L}% _{0}\left(\mathsf{L}_{1}\right)$ \setminus ø $\left|f_{\scriptscriptstyle F}^{}N_{\scriptscriptstyle \#}\right.$ *E* 5TeV $\bigg($ \setminus $\mathsf I$ \setminus ø ÷ 3 D*s* \overline{B} *h E* » 5TeV
	- ◆ Bending magnet integration w.r.t s using _{ノ_H ◯} $dH_{\scriptscriptstyle B}$ $\frac{H_B}{dt} = \left(6.85 \cdot 10^{-22} \frac{Sv}{T}\right)$ T æ \setminus \mathbf{r} \setminus ø $\left|f_{r}N_{\scriptscriptstyle{m}}\right|$ *E* 5TeV $\big($ \setminus $\overline{}$ \setminus ø ÷ 3 \overline{B} $\frac{B}{h} \int ds \exp \Big| -3$ *eBc Er*m *s* $\big($ \setminus I $\overline{}$ \setminus ø ÷ ÷ $($ $($ $)^2$ \setminus $\overline{}$ \parallel \setminus \int ÷ $=\left(2.47\cdot10^{-22}\,\text{Sv m}\right) f_{r}N_{m}$ *E* 5TeV æ \setminus \overline{a} \setminus ø ÷ 3 *B hB* $\mathcal{L}(s) = \left(eB / \left(gE_{rm} / c\right)\right)s$
	- ◆ Integrated peak equivalent dose per muon beam for one year operation (5000 h = 18 10 \degree s) without mitigation measures

Contribution only from of the two muon beams

 $N_{\scriptscriptstyle m}$ = 1.8×10¹² muons per bunch,

 \int_{0}^{π} = 5Hz repetition, f_r = 5Hz

- \overline{E} » 5TeV beam energy,
- C = $10000\rm{km}$ circumference and
- \overline{B} = 10.42T average field

Mitigation mandatory!!

Numerical evaluations equivalent dose from arc cell at 100 km

- **.** Integrals evaluated for present (work in progress by K. Skoufaris) 10 TeV collider arc half cell
- \bullet In collider mid-plane as function of \mathcal{J}_H (i.e., \mathcal{J}_V = 0) for one year (5000 h operation)

Mitigation by "Wobbling"

- Wobbling of machine in vertical direction part of MAP proposal?
	- ◆ Time-dependent mechanical deformation of ring around arc (including chromatic compensation, matching section and FMC arc cells
	- ◆ High precision movement system
	- ◆ Impact on optics?
- For 10 TeV com collider with 10 km circumference and say 4.8 km arcs

- ±16.7 Tm
	- \bullet Combination of pieces of parabola two pieces with opposite curvature one period
	- ◆ Say 8 periods 660 m long periods generating angles between -1 mrad and + 1 mrad
	- ◆ Magnetic field (average) bending in vertical ±0.11 T
	- ◆ Excursion (maximum total) ±150 mm
	- ◆ Replaces vertical Gaussian angle distribution with rms opening of ≈0.0086 mrad by about rectangular distribution within $±1$ mrad
	- => About two order of magnitude reduction of peak dose rates

Summary and Outlook

11

 $\frac{1}{2}$

- Dose generated at the earth surface due to showers generated by neutrino interactions is a serious issue
	- ◆ Muon decays generate narrow cone swept by bendings in bending plane
	- ◆ In particular high doses in direction of (short) straights sections
	- ◆ Numerical estimates based on "source term" from FLUKA simulations (=> Comparison with MARS results to be done?)
- **.** Time-dependent vertical deformation of the whole arc proposed as mitigation measure
	- ◆ For a 10 TeV com collider angle variations (linear up and down) in a range ±1 mrad would allow to gain about two orders of magnitude
	- ◆ To be combination with other mitigation measures
		- \Box Collider installed deep underground with suitable positioning
		- \Box Appropriate orientation towards uncritical areas (possibly owned by facility)
- **EXEC** Feasibility to be studied
	- ◆ High precision movement system
	- ◆ Impact on beam dynamics in particular in chromatic compensation and matching sections (vertical dispersion, orbit stability …)