Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Fermilab "Site Filler": Muon Collider?

David Neuffer

P. Bhat, A. Bross, J. Eldred, S. Jindariani, N. Mokhov, S. Posen, V. Shiltsev, D. Stratakis, K. Yonehara

Outline

- Fermilab
 - Site filler Muon Collider ?
 - possible future high-energy facility on Fermilab site
- Motivation
 - "Energy Frontier"
- Muon Collider Components
 - Muon source
 - Accelerator
 - Fast-cycling
 - Collider Ring
- Parameters
 - Up to ~10 TeV Muon collider "site-filler"

Energy Frontier

- >10TeV μ^+ - μ^- collider has an energy reach of 100 TeV pp collider
- Need High- Luminosity •($\overline{q}q$ events $\sigma \sim 1/s$) Vector boson fusion > σ ~ In(s)
- 500 Collider 200 Electro-weak sp. 100 **qq** new physics 50 $\mathbf{20}$ 5 10 15 20 2530**μ+-μ**⁻ ∫s,, [TeV] collider 1000 $VBF \rightarrow H$ 100 VBF → HH 10 σ**[fb]**

0.100

0.010

0.001

5

10

15

 $\sqrt{s_{\mu}}$ [TeV]

20

ťť

ΗZ

tτH

30

b

03/12/2020

25

➤Goal is ~ 2 attobarn⁻¹/year •L = $2 \ 10^{35} \ \text{cm}^{-2} \text{s}^{-1} \ 10^7 \ \text{s/year}$

Muon Collider - MAP Concept

Table 1: Tentative target parameters for a muon collider at different energies.

Sample collider lattice-

≻6 TeV (3x3) lattice – MAP

> Wang, Nosochkov, Cai and Palmer JINST 11, P09003

- •C=6.3 km (B_{ave}= 10 T)
 - Max pole-tip fields
 - 15-20 T dipoles, 15 T quads
 ~16 T bending
 - ~isochronous
- Extrapolate to 10 TeV
 - •C→10.5 km, R=1.67 km
 - Fits within Fermilab site

First draft lattice

- Kyriacos Skoufaris and Christian Carli
 - C=8.06 km +

Accelerator is larger

Includes rf, cycling elements

Acceleration methods

Linear Accelerator

5 TeV → > 100 km

Race-track Recirculating Linac (RLA)

- (like CEBAF)
- Separate return transports
 - 5-6 turns \rightarrow ??
 - cost/complexity of multiple turns

Rapid Cycling Synchrotron

- B_{tvp} = ~1.5 T, 15- 60 Hz
- Hybrid High field + pulsed
- Example:

∩-

-6`

Bending, Accelerating fields:

Conventional (Ferric)

•~ 2T

- Superconducting –NbTi
- Tevatron ~4 T
- •LHC ~8 T
- ≻Superconducting Nb₃Sn
- •HL-LHC + \rightarrow 16T
- ≻HTS superconductor ...
 •REBCO → 40 T ?

≻Pulsed magnets •±2 T → ± 4 T ~200-600 T/s

- 12 T/s HTS → 270 T/s
- Piekarz et al. NIM A 943, 162490 (2019)
- Piekarz et al. Fermilab-conf-21-695 (2021)

SRF accelerating fields

- •17 MV/m (650 MHz PIP-II)
- •30 MV/m (1300 MHz SLS-2)

Future upgrades
•40 → 50 MV/m → 80??

- > Pulsed rf Cu \rightarrow ??
 - 50 → 100 MV /m

Acceleration to 5 TeV at Fermilab

>0-65 GeV Linac + 10-turn RLA

3 GeV Linac

650 MHz SRF

- ~6 GeV Recirculating Linac
- 650 MHz
 - ~10 turns to 65GeV

≻65 GeV → 5 TeV

•RCS 1 – 65→330 GeV r=1km

• Normal conducting: 0.3→1.55T

•RCS 2 – 330→1000 GeV r=1km

- Hybrid 8±2 T
- •RCS 3 1 \rightarrow 5 TeV "site filler"
- Hybrid 16±4 T

	RCS- LE(nc)	RCS- HE(hybrid)	RCS-HF 16/4 hybrid
Input Energy	65	330	1000 GeV
Output Energy	330	1000	5000 GeV
Circumference	6.28	6.28	16.5 km
Pack Fraction	0.75	0.83	0.88
Total straight section	1.57	1.07	1.96
B-highfield		8	16 T
B-lowfield		±2 T	±3.95 T
B _{ave}	0.3 → 1.55 T	1.4 → 4.4 T	1.44 → 7.2 T
Fraction high-field		0.34	0.27
_			

 $65 \text{ GeV} \rightarrow 5 \text{ TeV} \text{ Scenario}$

Acceleration Scenario

Acceleration turns	36	97	270
Acceleration Time	0.76	2.03	15 ms
Beam survival	0.80	0.85	0.75
Rf voltage ($\phi_s = 60^\circ$)	8.63 GV	7.94 GV	17.1 GV
Ramp Rate	1650 T/s	1970 T/s	530 T/s

5 TeV with ±2 T RCS components

- Requires additional sitefiller RCS ring
 - •1->3.25 TeV
 - 19% 16 T magnets
 - •3.25→ 5 TeV
 - 37% 16 T magnets
- ~ 10 GV more rf•Decay losses higher

65 GeV → 5 TeV Scenario							
	RCS- LE(nc)	RCS- HE(hybrid)	RCS-HE 1	RCS-HE 2			
Input Energy	65	330	1000 GeV	3250 GeV			
Output Energy	330	1000	3250 GeV	5000 GeV			
Circumference	6.28	6.28	16.5 km	16.5 km			
Pack Fraction	0.75	0.83	0.88	0.88			
Total straight section	1.57	1.07	1.96	1.96			
B-highfield		8	16 T	16 T			
B-lowfield		±2 T	±2.0 T	±2.0 T			
B _{ave}	0.3 → 1.55T	1.4→4.4 T	1.44 → 4.7 T	4.7 → 7.2T			
Fraction high-field		0.34	0.192	0.37			
Acce							
Acceleration turns	36	97	161	249			
Acceleration Time	0.76	2.03	8.9 ms	13.7 ms			
Beam survival	0.80	0.85	0.80	0.85			
Rf voltage ($\phi_s = 60^\circ$)	8.63 GV	7.94 GV	16.1 GV	8.1 GV			
Ramp Rate	1650 T/s	1970 T/s	450 T/s	290 T/s			

Hybrid RCS Acceleration

- High-field fixed and low-field cycling magnets interleaved
 - •Orbit through cycling magnet varies in acceleration
 - Quadrupoles needed
 - Fixed or ramped ?
 - Fixed fields probably not stable
 - Limited to ramping fields
 - $0 \rightarrow 2 \text{ T}$ (or $0 \rightarrow 4 \text{ T}$ at pole tips)
 - Extra length for ramping quads must be included in lattice

- >Sample Lattice
 - •A. Garren and S. Berg
 - MAP-doc-4307 (2011)
 - •750 GeV in Tevatron

•Quadrupoles are ramped to keep tune constant

RLA~4→10 TeV Muon Collider (~2005-RLA

- ≻4 TeV Muon Collider
 - •2 TeV ring (~8T magnets)
 - RLA accelerator
- ~18 turns
 2km linacs -50 GeV each
 ~30 MV/m rf
 Arcs are ~8T magnets each

 Not quite site filler
 •Easily expand to 2.5x2.5
 - •(5 TeV)

Double gradients, B_{max}, larger racetrack 10 TeV (5 x 5) – (16 T – 60 MV/m)

Fixed Field Accelerators

- Fixed field alternatinggradient (FFA)
 - Scaling -> edge focusing
 - Constant tunes
 - Non-scaling
 - Crosses integer tunes
 - EMMA demo
 - •

≻CBETA

- •~RLA with FFA arcs
 - Tests concept of multiple passes in one transport
- Muon Acceleration ?•FFA in arcs

|KF|

Cornell-BNL ERL Test Accelerator

FFA acceleration

➤Vertical FFAG

S.Brooks, PRSTAB 16, 084001 (2013)

- ~same circumference for all energies
- More isochronous
- Edge focusing
- \succ Scaling → non-scaling
- Adaptable to muons ?

FIG. 5. 2D scaling VFFAG magnet design using block coils:

FIG. 8. Perspective view of the 12 GeV ring.

Site filler Accelerator

Proton Source

- PIP-III→target
- ≻µ Cooling
- ≻Linac + RLA → 65 GeV
 - 125 GeV Higgs
- ➢ RCS 1 and 2 → 1000 GeV

Tevatron-size

- ightarrow RCS 3 1 → 5 TeV
- Site filler accelerator

10 TeV collider Collider Ring ~10 km

Fermilab Proton Intensity Upgrade

Fermilab "PIP-III" Neutrino options

- > DUNE → ???
 - PIP-II → "PIU"
- ≻ Muon-based (µ→evv*) beams
 - Short BL (nuSTORM)
 - Long baseline \rightarrow DUNE

- -4 GeV μ Storage ring
- Muon source can be extended to feed a highenergy Collider

Costs ??

 Affordable?
 according to Shiltsev cost model (JINST 9 T07002 (2014)):

$$TPC \cong \alpha \left(\frac{L}{10\,km}\right)^{\frac{1}{2}} + \beta \left(\frac{E_{cm}}{1TeV}\right)^{\frac{1}{2}} + \gamma \left(\frac{P}{100\,MW}\right)^{\frac{1}{2}}$$

- $\alpha \cong 2G$ \$ for civil construction,
- $\beta \cong 1, 2 \text{ or } 10 \text{ G}$ \$
- for NC, SC magnets or SRF
- γ≈ 2B\$ wall plug power
- L=16, 60 GV rf, E_{cm}=10, P= ? MW
 - ~10¹ G\$?

Figure 4: Cost estimates of various future colliders.

Summary

- Fermilab site filler Collider possible
 - Muon Collider up to ~10 TeV Collider is possible
 - (5 × 5 TeV)
 - Requires ~16 T dipoles , in RCS scenarios
 - With rapid-cycling 2—4 T magnets
 - RLA/FFA scenarios also possible
- Strong interest at Snowmass
 - Muon Collider Forum report
 - K. M. Black, S. Jindariani et al.
 - ArXiv 2209.01318
 - Future Collider Options for the US
 - P. C. Bhat et al. 2203.08088

Thank you for your attention

