LFUV at MuC

Admir Greljo

13.10.2022, Muon Collider Collaboration Annual Meeting, CERN

Motivation

- The LHCb anomalies in $b \rightarrow s\mu^+\mu^-$ decays remind us that — New Physics might take an exotic form an option we should embrace given the present status of the field.
- Several *anomalous* observables: BRs, angular distributions, LFUV ratios. see LHCb Implications next week
- Coherent explanation by a short-distance $bs\mu\mu$ contact interaction $-\mathcal{O}(10^{-5})G_F$ the violation of perturbative unitarity $\leq 100 \,\mathrm{TeV}$
- New mass threshold in the vicinity of colliders?
- Today: Azatov, Garosi, AG, Marzocca, Salko, Trifinopoulos; <u>2205.13552</u>

Complementary high- p_T searches at future colliders: FCC-hh versus MuC

The scope

Competitors

Collider	C.o.m. Energy	Luminosity	Label
LHC Run-2	13 TeV	$140 {\rm ~fb^{-1}}$	LHC
HL-LHC	14 TeV	6 ab^{-1}	HL-LHC
FCC-hh	$100 { m TeV}$	$30 {\rm ~ab^{-1}}$	FCC-hh
Muon Collider	$3 { m TeV}$	1 ab^{-1}	MuC3
Muon Collider	$10 { m TeV}$	$10 {\rm ~ab^{-1}}$	MuC10
Muon Collider	14 TeV	20 ab^{-1}	MuC14

New Physics benchmarks:

I. Semileptonic 4F interactions

2. Gauged U(1) extensions

3. Leptoquarks

The Muon Beam

- Collinear radiation: Spreads the muon energy to lower values and generates different initial states \implies Parton Distribution Functions
- We cross-check and numerically solve the DGLAP equations from (Han et al, 2007.14300, 2103.09844) with appropriate initial conditions at the LL accuracy
- Selected PDFs at Q = 3 TeV:

4

The Muon Beam

• Parton luminosities

$$\mathcal{L}_{ij}(\tau) = \int_{\tau}^{1} \frac{dx}{x} f_i(x, m) f_j\left(\frac{\tau}{x}, m\right)$$

$$m^2 = (p_i + p_j)^2$$
$$\tau = m^2/s_0$$

Azatov, Garosi, AG, Marzocca, Salko, Trifinopoulos; 2205.13552

The signatures at MuC

 $m_X < \sqrt{s_0}$

 $m_X > \sqrt{s_0}$

- Kinematical features at $m_{\mu\mu} \sim m_X$ e.g. a resonance peak
- Corrections to the bins $m_{\mu\mu} \approx \sqrt{s_0}$ ''fifth force searches''

- Monotonously decreasing luminosities in proton colliders • Corrections to the bins $m_{\mu\mu} \approx \sqrt{s_0}$ ''EFT searches''

Results

Contact interactions

Figure 7. Sensitivity reach (95%CL) for the $(\bar{s}_L \gamma_\alpha b_L)(\bar{\mu}_L \gamma^\alpha \mu_L)$ contact interaction as function of the upper cut on the final-state invariant mass, compared to the value required to fit $bs\mu\mu$ anomalies (dashed orange line).

Contact interactions

Figure 8. Sensitivity reach (95%CL) for the $(\bar{b}_L \gamma_\alpha b_L)(\bar{\mu}_L \gamma^\alpha \mu_L)$ contact interaction as function of the upper cut on the final-state invariant mass. Solid (dashed) lines represent the limit for positive (negative) values of $C_{bb\mu\mu}$. The orange dotted and dashed lines shows reference values in relation to the $bs\mu\mu$ anomalies fit, with or without a $1/V_{ts}$ enhancement of the bb operator compared to the bs one, respectively.

$$\begin{aligned} \mathbf{Z}^{2} \text{ models: } B_{3} - L_{\mu} \\ \mathcal{L}_{Z'_{B_{3}-L_{\mu}}}^{\text{int}} &= -g_{Z'}Z'_{\alpha} \left[\frac{1}{3} \bar{Q}_{L}^{3} \gamma^{\alpha} Q_{L}^{3} + \frac{1}{3} \bar{b}_{R} \gamma^{\alpha} b_{R} + \frac{1}{3} \bar{t}_{R} \gamma^{\alpha} t_{R} - \bar{L}_{L}^{2} \gamma^{\alpha} L_{L}^{2} - \bar{\mu}_{R} \gamma^{\alpha} \mu_{R} + \left(\frac{1}{3} \epsilon_{sb} \bar{Q}_{L}^{2} \gamma^{\alpha} Q_{L}^{3} + \text{h.c.} \right) + \mathcal{O}(\epsilon_{sb}^{2}) \right] \end{aligned}$$

Figure 9. Discovery reach at 5σ for the $B_3 - L_{\mu}$ model with $\epsilon_{sb} = 0$, for different final states at each collider (as indicated by the labels). The region excluded at 95% CL by LHC [111] is above the black line while in the dark gray region the Z' has a large width, signaling a loss of perturbativity.

$$bs\mu\mu: \ \epsilon_{sb} = -1.7 \times 10^{-3} \left(\frac{M_{Z'}}{g_{Z'} \text{TeV}}\right)^2$$

0.5 1

5 10

50

Z' models: $L_{\mu} - L_{\tau}$

 $\mathcal{L}_{Z'_{L\mu-L\tau}}^{\text{int}} = -g_{Z'}Z'_{\alpha} \left[\bar{L}_{L}^{2}\gamma^{\alpha}L_{L}^{2} + \bar{\mu}_{R}\gamma^{\alpha}\mu_{R} - \bar{L}_{L}^{3}\gamma^{\alpha}L_{L}^{3} - \bar{\tau}_{R}\gamma^{\alpha}\tau_{R} + |\epsilon_{b}|^{2}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{3} + |\epsilon_{s}|^{2}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{2} + (\epsilon_{b}\epsilon_{s}^{*}\bar{Q}_{L}^{2}\gamma^{\alpha}Q_{L}^{3} + \text{h.c.}) + \dots \right]$

Figure 11. Discovery reach at 5σ for the $L_{\mu} - L_{\tau}$ model with $\epsilon_s = \epsilon_b = 0$ in Eq. (5.6). In the dark gray region the Z' has a large width, signaling a loss of perturbativity.

$$bs\mu\mu: \epsilon_b\epsilon_s^* = -5.7 \times 10^{-4} \left(\frac{M_{Z'}}{g_{Z'}\text{TeV}}\right)^2$$

e.g. $\epsilon_b = -\epsilon_s$

$$g_{Z'} 0.100$$

$$0.000$$

$$0.000$$

$$0.000$$

$$MuC3i$$

$$0.50$$

$$MuC3i$$

$$0.50$$

$$MuC3i$$

0.5 1

5 10

50

Scalar Leptoquark

$$S_{3} \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3) \qquad \mathcal{L}_{S_{3}}^{\text{int}} = \lambda_{i\mu} \,\overline{Q_{L}^{ic}} \,\epsilon \,\sigma^{I} L_{L}^{2} S_{3}^{I} + \text{h.c.} , \\ = -\lambda_{i\mu} S_{3}^{(1/3)} (V_{ji}^{*} \overline{u_{L}^{jc}} \mu_{L} + \overline{d_{L}^{ic}} \nu_{\mu}) + \sqrt{2} \lambda_{i\mu} \left(V_{ji}^{*} S_{3}^{(-2/3)} \overline{u_{L}^{jc}} \nu_{\mu} - S_{3}^{(4/3)} \overline{d_{L}^{ic}} \mu_{L} \right) + \text{h.c.}$$

Figure 13. The 5σ discovery prospects at future colliders for the S_3 leptoquark assuming the $U(2)^3$ quark flavour symmetry and the exclusive leptoquark coupling to muons (see Section 6.1).

Scalar Leptoquark

$$bs\mu\mu: \quad \lambda_{b\mu}\lambda_{s\mu} = -8.4 \times 10^{-4} \left(\frac{M_{S_3}}{\text{TeV}}\right)^2$$

Vector Leptoquark

Vector Leptoquark

$$bs\mu\mu: \quad \lambda_{b\mu}\lambda_{s\mu} = -8.4 \times 10^{-4} \left(\frac{M_{U_1}}{\text{TeV}}\right)^2$$

Resonant Leptoquark at FCC-hh

