Dark matter at the muon colliders

Xiaoran Zhao¹ In collaboration with R. Franceschini

Based on arXiv:22xx.xxxx

¹Dipartimento di Matematica e Fisica, Università di Roma Tre and INFN, sezione di Roma Tre, I-00146 Rome, Italy

October 12, 2022

- Dark matter is firmly established based on astrophysics observations and cosmology.
- Beyond the standard model
- Various candidates
 - Weakly interacting massive particles(WIMPs)
 - Axions
 - Sterile neutrinos
 - • •

- Direct detection: $DM+SM \rightarrow DM+SM$,
- Indirect detection: $DM+DM \rightarrow SM+SM$
- \bullet Collider experiments: SM+SM ${\rightarrow} DM{+}SM$

-

Real scalar or Majorana fermion:

• Additional *SU*(2) weak *n*-plet, which can be real scalar or Majorana fermion

$$\mathcal{L}_{S} = \frac{1}{2} (D_{\mu}\chi)^{2} - \frac{1}{2} M_{\chi}^{2} \chi^{2}$$
(1)

$$\mathcal{L}_{F} = \frac{1}{2} \chi (i \bar{\sigma}^{\mu} D_{\mu} - M_{\chi}) \chi$$
⁽²⁾

- Electroweak corrections introduce mass splitting
- The neutral one is also the lightest, hence DM candidates

Thermal masses including Sommerfeld enhancement and bound-state formation:

Bottaro et.al.2107.09688&2205.04486

- MF and RS: odd n, Y = 0
- DF and CS: both even and odd *n*, non-zero Y
- Masses are determined by *n*.
- n = 4,5 is at $\mathcal{O}(10)$ TeV,beyond the reach of LHC!

direct production at the muon collider

• mono-V:
$$\mu^+\mu^- \rightarrow \chi^i \chi^j + V, V = \gamma, Z, W$$

• mono- μ : $\mu^+\mu^- \rightarrow \chi^i \chi^j + \mu^\pm \nu$, $\gamma \mu^\pm \rightarrow \chi^i \chi^j + \mu^\pm$

• VBF di-
$$\mu$$
: $\mu^+\mu^- o \chi^i \chi^j + \mu^+\mu^-$

• di-V:
$$\mu^+\mu^- o \chi^i\chi^j + VV$$

• Disappearing tracks due to decay of $\chi^i \chi^j$

Main limitation: $M_{\chi} < \frac{\sqrt{s}}{2}$

direct production at muon colliders

Xiaoran Zhao (Roma Tre)

October 12, 2022 7 / 18

- Direct production is limited by $M < \frac{\sqrt{s}}{2}$.
- Indirect probes through loop corrections: no such limit!

Neutral current contribution

- Effects of fermions are much larger than scalars
- Large effects for low mass
- small effects for large mass(EFT regime)
- local peak for the threshold $M_{\chi} = rac{\sqrt{s}}{2}$

< 31

-

Differential distribution

- $e^+e^-, u\bar{u}, b\bar{b}$
 - peaks in forward region
 - θ coverage of detectors
 - Inclusive

 $\mu^+\mu^-$:

- SM peak in forward region
- NP effects peak in center region
- Need differential

< ∃ ►

= 200

Analysis

- Inclusive level: e^+e^- , $\tau^+\tau^-$,jj, $t\bar{t}$,HZ, W^+W^-
- Differential level: $\mu^+\mu^-$

EL SQA

< 回 > < 三 > < 三

October 12, 2022 12 / 18

- (日)

EL SQA

Differential distributions

Dominated by soft and collinear W bosons.

< A > <

= 200

Double logarithm $\ln^2 \frac{s}{m_W^2}$ and single logarithm are large: NC at fixed order \rightarrow NC+CC with resummation

	3 TeV			$10 { m TeV}$			30 TeV		
	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$	DL	$e^{\mathrm{DL}}-1$	$\operatorname{SL}(\frac{\pi}{2})$
$\ell_L \to \ell'_L$	-0.46	-0.37	0.25	-0.82	-0.56	0.33	-1.23	-0.71	0.41
$\ell_L \to q_L$	-0.44	-0.36	0.25	-0.78	-0.54	0.34	-1.18	-0.69	0.42
$\ell_L \to e_R$	-0.32	-0.27	0.13	-0.56	-0.43	0.17	-0.85	-0.57	0.21
$\ell_L \to u_R$	-0.27	-0.24	0.11	-0.48	-0.38	0.15	-0.72	-0.51	0.18
$\ell_L \to d_R$	-0.24	-0.21	0.10	-0.43	-0.35	0.13	-0.64	-0.47	0.16
$\ell_R \to \ell'_L$	-0.32	-0.27	0.13	-0.56	-0.43	0.17	-0.85	-0.57	0.21
$\ell_R \to q_L$	-0.30	-0.26	0.12	-0.53	-0.41	0.16	-0.79	-0.55	0.21
$\ell_R \to \ell'_R$	-0.17	-0.16	0.07	-0.30	-0.26	0.09	-0.46	-0.37	0.12
$\ell_R \to u_R$	-0.12	-0.12	0.05	-0.22	-0.20	0.07	-0.33	-0.28	0.08
$\ell_R \to d_R$	-0.09	-0.09	0.04	-0.17	-0.16	0.05	-0.25	-0.22	0.06

Table 1: Double and single logarithmic corrections to the exclusive processes $\ell^+\ell^- \to \bar{f}f$. The single-logarithmic corrections are evaluated at $\theta_* = \pi/2$.

Chen et.al.2202.10509

Hard radiation

- NP effects is about 0 when $\sqrt{s}\sim 3.2M_\chi$ for NC
- Initial state hard radiation can reduce $m(f\bar{f})$ from \sqrt{s} to $\sim 2M_{\chi}$ (threshold region)

With hard W radiation:

- Neutral current provides most of the constraints
- Hard W radiation helps to resolve the region $\sqrt{s} \sim 3.2 M_{\chi}$
- Need further improvements on theoretical prediction
- Need to combine with direct productions

Combined NC+CC

October 12, 2022 17

= 990

- mono-X,di-X and DT for low mass region $M_{\chi} < \frac{\sqrt{s}}{2}$
- Indirect probes are good at thresholds $M_\chi \sim rac{\sqrt{s}}{2}$
- and can probe high mass $M_{\chi} > rac{\sqrt{s}}{2}$
- Soft/collinear radiations shift NC to NC+CC
- Hard radiations affect the dynamics and sensitivities
- Statistic uncertainties in $O(0.1 \sim 1\%)$ level: need further improvements on theoretical predictions(NLO+NLL or higher?)

Backup slides

三日 のへの