The physics case of a very forward muon detector

Maximilian Ruhdorfer Cornell University

Muon Collider Collaboration Meeting October 12, 2022

Work in progress with R. Masarotti, E. Salvioni and A. Wulzer

Why Forward Muons?

• HE muon collider is a vector boson collider

final state muons are typically very forward

with limited detector coverage of $\theta > 10^{\circ}$ muons are often lost

- Resolving forward muons is essential for:
 - Better BG separation in Higgs coupling measurements (e.g ZZ fusion vs WW fusion)
 See e.g. Forslund, Meade '22
 - 2. Studying signatures with invisible particles (DM, LLPs,...)

Why Forward Muons?

• HE muon collider is a vector boson collider

final state muons are typically very forward

with limited detector coverage of $\theta > 10^{\circ}$ muons are often lost

- Resolving forward muons is essential for:
 - Better BG separation in Higgs coupling measurements (e.g ZZ fusion vs WW fusion)
 See e.g. Forslund, Meade '22

2. Studying signatures with invisible particles (DM, LLPs,...)

Our focus in the following

This Talk

1. Physics case for very forward muon detector (idealized)

• Focus on scalar Higgs portal to invisible new physics

$$\frac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$$

derivative portal

• Assume perfect resolution of MIM,...

2. Realistic case study: invisible Higgs decays

- Include accelerator and detector effects (beam energy spread,...)
- New BGs become important

Marginal Higgs portal (aka renormalizable Higgs portal)

$$\mathscr{L}_{\rm BSM} \supset -\frac{\lambda}{2} \phi^2 H^{\dagger} H$$

• Scalar DM ϕ

minimal version in tension with direct detection, but possible in extended theories

Recent review: 1903.03616

Marginal Higgs portal (aka renormalizable Higgs portal)

$$\mathscr{L}_{\rm BSM} \supset -\frac{\lambda}{2} \phi^2 H^{\dagger} H$$

• Scalar DM ϕ

 minimal version in tension with direct detection, but possible in extended theories

• Neutral naturalness: ϕ is scalar top partner

> effective coupling
$$\lambda = \sqrt{4N_c} \, y_t^2 pprox 3.4$$

Cheng, Li, Salvioni, Verhaaren 2018 Cohen, Craig, Giudice, McCullough 2018

Marginal Higgs portal (aka renormalizable Higgs portal)

$$\mathscr{L}_{\rm BSM} \supset -\frac{\lambda}{2} \phi^2 H^{\dagger} H$$

• Scalar DM ϕ

minimal version in tension with direct detection, but possible in extended theories
Recent review: 1903.03616

• Neutral naturalness: ϕ is scalar top partner

- effective coupling
$$\lambda = \sqrt{4N_c} \, y_t^2 pprox 3.4$$

Cheng, Li, Salvioni, Verhaaren 2018 Cohen, Craig, Giudice, McCullough 2018

• First-order electroweak phase transition

- requires large couplings
$$\ \lambda \sim {\cal O}(1)$$

For collider tests see e.g. Curtin, Meade, Yu 2014

Derivative Higgs portal

 $rac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$

Frigerio, Pomarol, Riva, Urbano 2012

• If ϕ is stable: pseudo Nambu-Goldstone Boson dark matter

arises naturally in non-minimal Composite Higgs models

Derivative Higgs portal

$$rac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$$

Frigerio, Pomarol, Riva, Urbano 2012

• If ϕ is stable: pseudo Nambu-Goldstone Boson dark matter

arises naturally in non-minimal Composite Higgs models

Derivative Higgs portal

$$rac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$$

Frigerio, Pomarol, Riva, Urbano 2012

• If ϕ is stable: pseudo Nambu-Goldstone Boson dark matter

arises naturally in non-minimal Composite Higgs models

Derivative Higgs portal

$$rac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$$

Frigerio, Pomarol, Riva, Urbano 2012

• If ϕ is stable: pseudo Nambu-Goldstone Boson dark matter

arises naturally in non-minimal Composite Higgs models

Colliders are important direct probes, complementary to direct detection

Invisible singlets at the muon collider

• Main production channel is VBF for $\sqrt{s}\gtrsim 1~{\rm TeV}$

WW fusion is completely invisible, focus on ZZ fusion

• Main BG:
$$\mu^-\mu^+ \rightarrow \mu^-\mu^+ \nu \bar{\nu}$$

• MIM is very effective for BG suppression

Invisible singlets at the muon collider

• Main production channel is VBF for $\sqrt{s} \gtrsim 1$ TeV

WW fusion is completely invisible, focus on ZZ fusion

• Main BG:
$$\mu^-\mu^+ \rightarrow \mu^-\mu^+ \nu \bar{\nu}$$

MIM is very effective for BG suppression

$$m_{\phi} < m_h/2$$

 $\sqrt{s} = 6 \text{ TeV}$

Invisible singlets at the muon collider

• Main production channel is VBF for $\sqrt{s} \gtrsim 1$ TeV

WW fusion is completely invisible, focus on ZZ fusion

• Main BG:
$$\mu^-\mu^+ \rightarrow \mu^-\mu^+ \nu \bar{\nu}$$

MIM is very effective for BG suppression

$$m_{\phi} < m_h/2$$

$$\sqrt{s} = 6 \text{ TeV}$$

Higgs Portal: forward muons

Caveat: coverage of very forward muons is crucial

θ	η
0°	00
0.1°	7.04
0.5°	5.43
1°	4.74
2°	4.05
5°	3.13
10°	2.44

Higgs Portal: forward muons

Caveat: coverage of very forward muons is crucial

v	''
0°	00
0.1°	7.04
0.5°	5.43
1°	4.74
2°	4.05
5°	3.13
10°	2.44

Higgs Portal: forward muons

Caveat: coverage of very forward muons is crucial

0°	00
0.1°	7.04
0.5°	5.43
1°	4.74
2°	4.05
5°	3.13
10°	2.44

θ

 η

HL-LHC CLIC 1.5 HE-LHC CLIC 3 FCC 100 μ C 6 μ C 14

 m_{ϕ} [GeV]130170190310330540990at $\lambda = \sqrt{4N_c} y_t^2 \approx 3.4$ (scalar top partners)8

 m_{ϕ} [GeV]130170190310330540990at $\lambda = \sqrt{4N_c} y_t^2 \approx 3.4$ $\sqrt{s} = 6$ TeV muon collider outperforms FCC-hh(scalar top partners)8

Marginal Higgs Portal: 1st order EWPT

Shaded regions: possibility of a first order EW phase transition

Buttazzo, Redigolo, Sala, Tesi 1807.04743

Only muon collider can truly probe pNGB DM

• At FCC-hh: $BR(h \rightarrow inv) < 2.5 \cdot 10^{-4}$

How well can we do at a muon collider as a function of the detector coverage?

• At FCC-hh: $BR(h \rightarrow inv) < 2.5 \cdot 10^{-4}$

How well can we do at a muon collider as a function of the detector coverage?

• Consider ZZ-fusion production at $\sqrt{s}=10~{\rm TeV}$

• At FCC-hh: $BR(h \rightarrow inv) < 2.5 \cdot 10^{-4}$

How well can we do at a muon collider as a function of the detector coverage?

• Consider ZZ-fusion production at $\sqrt{s} = 10 \text{ TeV}$

• Main BG: $\mu^-\mu^+ \rightarrow \mu^-\mu^+ \nu \bar{\nu}$

• At FCC-hh: $BR(h \rightarrow inv) < 2.5 \cdot 10^{-4}$

How well can we do at a muon collider as a function of the detector coverage?

• Consider ZZ-fusion production at $\sqrt{s} = 10$ TeV

• Main BG:
$$\mu^-\mu^+ \rightarrow \mu^-\mu^+ \nu \bar{\nu}$$

• In contrast to FCC-hh:

Muon collider is sensitive to MIM

MIM is essential for BG suppression

$$MIM = \sqrt{p_{\mu}p^{\mu}} \qquad p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-} \qquad 1$$

Maximilian Ruhdorfer (Cornell)

Invisible Higgs Decay: Parton Level

• Cut on MIM, $M_{\mu\mu}, \Delta \eta_{\mu\mu}, E_T, \min(E_{\mu^-}, E_{\mu^+})$

Invisible Higgs Decay: Parton Level

• Cut on MIM, $M_{\mu\mu}, \Delta \eta_{\mu\mu}, E_T, \min(E_{\mu^-}, E_{\mu^+})$

Invisible Higgs Decay: Parton Level

• Cut on MIM, $M_{\mu\mu}, \Delta \eta_{\mu\mu}, E_T, \min(E_{\mu^-}, E_{\mu^+})$

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-}$$

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-}$$

1. Beam energy spread (BES)

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-}$$
1. Beam energy spread (BES)
2. Beam angular spread (BAS)

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-} + ?$$
1. Beam energy spread (BES)
2. Beam angular spread (BAS)
3. Uncertainty in energy measurement

Irreducible imperfections of MIM measurement

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-} + ?$$
1. Beam energy spread (BES)
2. Beam angular spread (BAS)
3. Uncertainty in energy measurement

• Different definitions for MIM possible MIM $\equiv \left| \sqrt{\not p_{\mu} \not p^{\mu}} \right|$ or MIM $\equiv \operatorname{Re} \left(\sqrt{\not p_{\mu} \not p^{\mu}} \right)$

Irreducible imperfections of MIM measurement

$$p = (\sqrt{s}, \vec{0}) - p_{\mu^+} - p_{\mu^-} + ?$$
1. Beam energy spread (BES)
2. Beam angular spread (BAS)
3. Uncertainty in energy measurement

- Different definitions for MIM possible MIM $\equiv \left| \sqrt{\not p_{\mu} \not p^{\mu}} \right|$ or MIM $\equiv \operatorname{Re} \left(\sqrt{\not p_{\mu} \not p^{\mu}} \right)$
- High-rate processes become important BGs $\mu^-\mu^+
 ightarrow \mu^-\mu^+$

$$\mu^-\mu^+ \to \mu^-\mu^+\gamma$$

Maximilian Ruhdorfer (Cornell)

$$p_{\mu^{-}} = (E_1, 0, 0, E_1) \longrightarrow \mu^{-} \mu^{+} p_{\mu^{+}} = (E_2, 0, 0, -E_2)$$

• Expected BES is 1 per mille e.g. 2203.07224

Detection frame \neq COM frame (longitudinal boost)

MIM distribution gets smeared

$$p_{\mu^{-}} = (E_1, 0, 0, E_1) \longrightarrow \mu^{-} \mu^{+} p_{\mu^{+}} = (E_2, 0, 0, -E_2)$$

• Expected BES is 1 per mille e.g. 2203.07224

Detection frame \neq COM frame (longitudinal boost)

$$p_{\mu^{-}} = (E_1, 0, 0, E_1) \longrightarrow \mu^{-} \mu^{+} p_{\mu^{+}} = (E_2, 0, 0, -E_2)$$

• Expected BES is 1 per mille e.g. 2203.07224

Detection frame \neq COM frame (longitudinal boost)

- Higgs peak swamped by photon BG
- Width of photon distribution set by p_{γ}^{z}

$$\Delta \mathrm{MIM} \sim 200~\mathrm{GeV} \left(\frac{\delta_{\mathrm{BES}}}{10^{-3}}\right)^{1/2} \left(\frac{p_{\gamma}^z}{2~\mathrm{TeV}}\right)^{1/2}$$

- Higgs peak swamped by photon BG
- Width of photon distribution set by p_{γ}^{z}

$$\Delta \text{MIM} \sim 200 \text{ GeV} \left(\frac{\delta_{\text{BES}}}{10^{-3}}\right)^{1/2} \left(\frac{p_{\gamma}^z}{2 \text{ TeV}}\right)^{1/2}$$

Hard collinear photon emission is main source of photon BG

- Higgs peak swamped by photon BG
- Width of photon distribution set by p_{γ}^z

$$\Delta \text{MIM} \sim 200 \text{ GeV} \left(\frac{\delta_{\text{BES}}}{10^{-3}}\right)^{1/2} \left(\frac{p_{\gamma}^z}{2 \text{ TeV}}\right)^{1/2}$$

Hard collinear photon emission is main source of photon BG

One of the muons will be less energetic

Efficient suppression with cut on

$$\operatorname{Min}(E_{\mu^-},E_{\mu^+})$$

Comment on Photon BG

• Photon BG is generated at fixed order in MadGraph

• Generator level cuts of $p_T^{\gamma} > 10$ GeV and $|\eta_{\gamma}| > 2.44$

 \rightarrow assume that EM calorimeter only covers $\theta > 10^{\circ}$ ($|\eta| < 2.44$)

 Including photon radiation from signal and an improved simulation is work in progress

Beam Angular Spread (BAS)

• Average angular spread $\Delta \theta \sim 0.6 \,\mathrm{mrad}$

final state muons are boosted w.r.t. collision in COM frame (transverse)

• Seems to have small effect on analysis

Beam Angular Spread (BAS)

• Average angular spread $\Delta \theta \sim 0.6 \,\mathrm{mrad}$

final state muons are boosted w.r.t. collision in COM frame (transverse)

Seems to have small effect on analysis

• Energy measurement uncertainty of forward muons has large effect on MIM

• Energy measurement uncertainty of forward muons has large effect on MIM

500

Maximilian Ruhdorfer (Cornell)

• Energy measurement uncertainty of forward muons has large effect on MIM

• Energy measurement uncertainty of forward muons has large effect on MIM

• Sensitivity to $BR(h \rightarrow inv)$ with all effects combined

1. Perfect 4-momentum reconstruction

• Sensitivity to $BR(h \rightarrow inv)$ with all effects combined

1. Perfect 4-momentum reconstruction

2.0.1% BES

• Sensitivity to $BR(h \rightarrow inv)$ with all effects combined

Perfect 4-momentum reconstruction
 0.1% BES

3. 0.1% BES + 0.1% energy uncertainty

• Sensitivity to $BR(h \rightarrow inv)$ with all effects combined

Perfect 4-momentum reconstruction
 0.1% BES
 0.1% BES + 0.1% energy uncertainty
 0.1% BES + 1% energy uncertainty

• Sensitivity to $BR(h \rightarrow inv)$ with all effects combined

Next Steps

- Improve simulation of photon BG
- Include photon radiation off signal
- Further detector / accelerator effects (displacement of interaction point,...)
- Apply to other scenarios

Your suggestions or comments

Invisible Higgs Decay Distributions

Maximilian Ruhdorfer (Cornell)

Cut Summary

Maximilian Ruhdorfer (Cornell)

MIM Scaling with BES

- Consider $\mu^{-}(p_1)\mu^{+}(p_2) \to \mu^{-}(p_{\mu^{-}}^{\text{out}})\mu^{+}(p_{\mu^{+}}^{\text{out}})\gamma(p_{\gamma})$
- True initial 4-vectors $p_{1/2}^{\mu} = E_{1/2}(1, 0, 0, \pm 1)$

• MIM² =
$$(p_1 + p_2 - p_{\mu^-}^{\text{out}} - p_{\mu^+}^{\text{out}})^2 = p_{\gamma}^2 = 0$$

• We do not know initial 4-momenta and assume $\tilde{p}_{1/2}^{\mu} = \frac{\sqrt{s}}{2}(1,0,0,\pm 1)$

$$MIM^{2} = (\tilde{p}_{1} + \tilde{p}_{2} - p_{\mu^{-}}^{out} - p_{\mu^{+}}^{out})^{2} = (\tilde{p}_{1} + \tilde{p}_{2} - p_{1} - p_{2} + p_{\gamma})^{2}$$

• For $E_i = \frac{\sqrt{s}}{2}(1+\delta_i)$

 $\mathrm{MIM}^2 = 2(\tilde{p}_1 + \tilde{p}_2 - p_1 - p_2) \cdot p_\gamma + \mathcal{O}(\delta_i^2) \simeq 2 |p_\gamma^z| \sqrt{s} \, \delta_i$

pNGB DM Realizations

• **Complex** scalar DM

 $SO(7)/SO(6) \longrightarrow (H, \chi) \sim \mathbf{4}_0 + \mathbf{1}_{\pm 1}$ of $SO(4)_{U(1)_{\text{DM}}}$ \blacksquare stabilised by exact $U(1)_{\text{DM}} \subset SO(6)$ Balkin, MR, Salvioni, Weiler, 1707.07685

- Controlled Goldstone symmetry-breaking / mass generation by
 - 1. Coupling to top $\lambda \sim \frac{\lambda_h}{2}$ In tension with XENON1T

Balkin, MR, Salvioni, Weiler, 1707.07685

2. Coupling to bottom (or lighter quarks)

 $\lambda \propto y_b^2 \ll 1$

Balkin, MR, Salvioni, Weiler, 1809.09106

3. Weakly gauging $U(1)_{\text{DM}} = \lambda \propto \text{higher-loop} \ll 1$

Non Composite Higgs pNGB DM

• **pNGB DM** can arise from complex scalar with U(1) broken by mass term

$$\mathcal{L} = \mathcal{L}_{\rm SM} + |\partial_{\mu}S|^2 + \frac{\mu_S^2}{2}|S|^2 - \frac{\lambda_S}{2}|S|^4 - \lambda_{HS}|S|^2|H|^2 + \frac{{\mu_S'}^2}{4}(S^2 + \text{h.c.})$$

 \longrightarrow U(1) spontaneously broken $S = \frac{1}{\sqrt{2}}(v_s + \sigma)e^{i\phi/v_s}$

• Integrating out radial mode generates $\frac{c_d}{2f^2}\partial_\mu\phi^2\partial^\mu|H|^2$ with $\frac{c_d}{f^2} \simeq \frac{\lambda_{HS}}{\lambda_S v_S^2}$

→ note that corrections to Higgs couplings scale as $\frac{c_H}{c_d} \simeq \frac{\lambda_{HS}}{\lambda_S}$

instead of $\frac{c_H}{c_d} \simeq 1$ (typical scaling in Composite Higgs)