Piezo tuner & Power coupler for ILC

International Linear Collider (ILC)

Summary of key specifications for SRF Main linac

Table 3.1

Summary of key numbers for the SCRF Main Linacs for 500 GeV centre-of-massenergy operation. Where parameters for positron and electron linacs differ, the electron parameters are given in parenthesis.

Piezo also works by pulsed mode of 5Hz

RF repetition rate: 5Hz

Cavity (nine-cell TESLA elliptical shape)		
Average accelerating gradient	31.5	MV/m
Quality factor Q_0 Effective length R/Q Accepted operational gradient spread	10^{10} 1.038 1036 ±20%	m Ω
<i>Cryomodule</i> Total slot length Type A Type B	12.652 9 cavities 8 cavities	m 1 SC quad package
<i>ML unit (half FODO cell)</i> (Type A - Type B - Type A)	282 (285)	units
<i>Total component counts</i> Cryomodule Type A Cryomodule Type B Nine-cell cavities SC quadrupole package	564 (570) 282 (285) 7332 (7410) 282 (285)	
Total linac length – flat top. Total linac length – mountain top. Effective average accelerating gradient	11027 (11141) 11072 (11188) 21.3	m m MV/m
RF requirements (for average gradient) Beam current beam (peak) power per cavity Matched loaded Q (Q_L) Cavity fill time Beam pulse length Total RF pulse length RF-beam power efficiency	5.8 190 $5.4 imes 10^{6}$ 924 727 1650 44%	mA kW μs μs μs

Tuner

Specifications on tuner system in TDR

T 11 20							
Table 3.8 Main specifications of the	Tuner	Parameter	Specifications				
frequency tuner.	Slow tuner						
		Tuning range	> 600 kHz				
		Hysteresis	$< 10\mu m$				
		Motor characteristics	Step motor, power-off holding, magnetically shielded				
		Motor location	Inside 5K shield, accessible from outside				
		Magnetic shield	< 20mG				
		Heat load by motor	$< 50\mathrm{mW}$ at $2\mathrm{K}$				
		Motor lifetime	$>20 imes10^{6}$ steps				
	Fast tuner						
for fine tuning		Tuning range	>1KHz at 2K				
		LFD residuals	< 50 Hz at 31.5 MV/m flat-top				
		Actuator	Piezo actuator, located inside 5K shield,				
			Two actuators for redundancy				
		Heat load by actuator	< 50 mW at 2 K				
		Magnetic shield	< 20mG				
		Actuator lifetime	$> 10^{10}$ pulses				

Summary of tuner systems and their specifications

Revised Table 2.12 ''Vari	ous tuners investigated in	n the Technical Design Ph	ase."	12/Apr/2021 Revised by Yuriy + Kirk
	(SLIM) Blade tuner [1]	Saclay/DESY tuner [2]	Slide-jack tuner [3]	Double-lever tuner [4]
Туре	Coaxial	Lateral-Pick-up side	Coaxial and lateral coupler side	Lateral-Pick-up side
(fit to) Beampipes of TESLA Cavity	short-short, short-long	short-long	short-short, short-long	short-short, short-long
Cavity/Tuner system stiffness	30 kN/mm	30 kN/mm	70 kN/mm	40 kN/mm
	Inside vessel	Inside vessel	Outside vessel	Inside vessel
	Stepper motor	Stepper motor	Stepper motor	Stepper motor
Drive unit	Harmonic Drive	Harmonic Drive	both manual or stepper motor actuation	Planetary Gear Drive
Nominal frequency	1.3 GHz	1.3 GHz	1.3 GHz	1.3 GHz
Nominal tunable range	600 kHz	500 kHz	900 kHz	800 kHz
Nominal sensitivity	1.5 Hz/step	1 Hz/step	3 Hz/step	1.4 Hz/step
Coarse tuner hystersis	100Hz	100Hz		45Hz
	2, thin-layer	2, thin-layer	1, thick-layer	2, thin-layer
Piezo	(0.1 mm), dim.	(0.1 mm), dim.	(2 mm), dim.	(0.1 mm), dim.
	$10 \text{ x } 10 \text{ x } 40 \text{ mm}^3$	$10 \text{ x} 10 \text{ x} 36 \text{ mm}^3$	diameter 35 x 78 mm ²	10x 10 x 36 mm ³
Piezo Voltage	200 V	120 V	1000 V, operated at 500 V	120 V
Nominal piezo stroke at R.T.	55 μm	40 μm	40 μm	40um
Nominal piezo capacitance at R.T.	8 μF	13 μF	0.9 μF	13 μF
Nominal tunable range (tested at 2K)	2,000 Hz	800 Hz	~600 Hz @500 V	3,000 Hz
Capability to repair (motor + piezo)	No	No	OK	OK
H of twee or ereted in a coloratory		900 @E VEEL	14 @STE 2 Owenters Design	220 - 100 @LCLS H (UD)
# of tuner operated in S1 Clabal	8 @FNAL/FAST	800 @E-AFEL	14 @SIF-2, Quantum Beam	320+180 @LCLS-II (HE)
# of tuner operated in S1-Global	2	2	4	

[1] https://lss.fnal.gov/archive/2011/conf/fermilab-conf-11-101-td.pdf

[2] LLRF Tests of XFEL Cryomodules at AMTF: First Experimental Results (cern.ch)

[3] Cryomodule Tests of Four Tesla-Like Cavities in the STF Phass-1.0 for ILC (cern.ch)

[4] https://accelconf.web.cern.ch/IPAC2015/papers/wepty035.pdf

12/Oct/2022

Tuners serving (significant amount of)1.3GHz elliptical cavities

SLIM Blade Tuner (N=10 units at FNAL's CM2/FAST)

5 Fermilab

Yuriy Pischalnikov, FNAL's design compact SRF Cavity Tuners for ILC

"S1-Global" project as global collaboration

- Done at GDE era
- Global collaboration
- Comparison of performance

TESLA Cavity (DESY/FNAL)

Tesla-like (KEK)

Slide-Jack Tuner (KEK)

Piezo tuner systems used for S1-Global

Two types of piezo tuner

- ♦ High voltage (~1 kV): STF
- ♦ Low voltage (~200 V): DESY/INFN

Piezo used for LCLS-II

Piezo Actuator P-844K075

- Designed by Physik Instrumente (PI)
- (with contribution from FNAL) for LCLS II Project.

Each capsule has inside two (glued) 10*10*18mm PICMA piezos. Piezo, during assembly into capsule, internally preloaded with 800N.

Each Cavity/Tuner system has 4 (four) electrically separate piezo-stacks. Tuner could operate even after failure of 2 stacks

Lorentz force detuning of SRF cavity at high gradient

Pumped

Helium

~~>

Pressure

Fluctuations

◆ LFD generates at high gradient

- Not flat accelerating gradient
- \blacklozenge Piezo works for compensation of LFD

12/Oct/2022

LFD results at S1-Global

- STF cavity has more mechanical stiffness for less LFD effect
 - The frequency change is same for rise-up, but quite different for flat-top between TESLA and STF cavity.

You can consider the balance between the mechanical stiffness and the cost of the cavity

C4/Z109 @29MV/m

(TESLA cavity)

A2/MHI-06 @38MV/m (STF cavity)

12/Oct/2022

LFD compensation by piezo at S1-Global

Piezo operation parameters for LFD compensation

RF frequency sweep (example of RCS2)

- RF frequency sweep need in ~1 ms, from injection to extraction
- $\Delta f/f = \Delta I/(2\pi R) \approx 1.7 \cdot 10^{-6} \rightarrow \Delta f \approx 2.2 \text{ kHz}$
- Reported tuning ranges for TESLA-style cavities
- W. Cichalewski et al., ICALEPCS2015, p. 266: $\Delta f \approx 1.2 \text{ kHz}$
- Y. Pischalnikov, <u>ILCX2021-ILC</u>: $\Delta f \approx 3 \text{ kHz}$
- V. Jain, <u>IJAS2020</u>

As SRF cavity has mechanical inertia, it takes 1 msec to change by 1kHz.

Power coupler

Specifications on power coupler system for ILC

coupler.

Q_L range measurement at S1-Global

TTF-III coupler satisfied the specification of Q_L range

TTF3 Input Power Coupler

Outer diameter of inner conductor: 12.4 mm Head of inner conductor: 20.7 mm

Result at the highest gradient at STF-2

>500 kW (peak power) @40MV/m

						iciio. (cr	EC_OTAKT CAE			-	Геадрас	K: 0.00W	0.0044	Z.4214188 U.1	8
		1	Cavity Monitor (СМ1,СМ2	2a)	BE	AM OFF 入	射器モード	-	2021	/11/24 17:02:14				
	STE 2 Coupler			#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12
	STF-2 Coupler		Pf (W):	95.51kW	108.72kW	96.85kW	41.96kW	132.29kW	3.06kW	23.99kW	130.24kW	120.87kW	92.72kW	77.83kW	94.55kW
		-	Pf Eacc(MV/m):	38.52	35.39	136.82	28.27	47.21	7.41	20.86	46.98	22.22	90.95	34.64	NaN
		1	Pt(W):	920.65uW	605.50uW	3.34mW	5.90W	14.20W	452.99mW	3.11W	2.14mW	1.96mW	178.97uW	280.33uW	1.94mW
			Pt Eacc(MV/m):	0.30	0.27	0.73	23.78	40.21	6.48	20.03	0.48	0.56	0.16	0.18	0.52
		1	E-Pulse(mV):	148.000	155.000	126.000	136.000	877.000	162.000	136.000	129.000	201.000	225.000	3816.000	722.000
		1	E-Charge(mV):	87.000	256.000	117.000	97.000	681.000	295.000	225.000	180.000	625.000	844.000	13837.000	3617.000
			Arc(mV):	201.000	192.000	202.000	190.000	206.000	224.000	217.000	209.000	137.000	133.000	185.000	171.000
			Helium		۱ ا	/acuum–	N		Powe	er 🚽		Radiati	on——		
			flow rate 2K	51.125 m³/ł	hour	Captur	e Upstream	2.71E-7 P	a KL	.Y3上 Pf	2.42MW	_	Low	Hig	ţh
		Ea	float rate 5K	-0.200 m³/ł	hour	Capture [ownstream	1.62E-7 P	a KL	.Y3下 Pf	2.58MW	Up:	1.061 mS	v/h 309	.651 uSv/h
	\wedge	E	Heat Load 2K	59.646 w		Capture In	put coupler	8.14E-7 P	Pa Pt E	acc sum 9	3.69MV/m	Mid:	1.061 mS	v/h 170	.140 uSv/h
		_	Pressure 2K:	3.26 kPa		Capture Inne	r conductor	4.19E-8 P	a PtE	acc ave.	7.81MV/m	Down:	3.356 ms	v/h 41	. <u>750</u> uSv/h
			Pressure 4K	125.94 kPa		CM	1 Upstream	1.22E-7 P	a In	put Volt	2.38V	Foodba	ck		
		1	Level 4K:	53.66 %		CM1 In	put coupler	2.23E-6 P	a			reeuba	CK	OFF	
10	1.0		2K:	54.49 %		CM1 Inne	r conductor	2.18E-8 P	Pt Ea	acc sum 9	3.69MV/m		eeuback	25.20	
$10\mu m co$	pper plating		nd:	22.20 %		CM2a L		1.80E-7 P	Pt E	acc ave.	7.81MV/m	, N	errower	23.20	
95% puri	ty for alumina w/ 1	0 nm TiN co	ating ^{lure-}	4.64		CM2a Inne	r conductor	3.47E-8 P	a cav1	cav2 ca	v3 cav4	Beam-			
	cy for arannina (), f		pt:	4.64 K		CM1/	CM2a Vessel	2 33E-5 P	cav5	cav6 ca	v7 cav8	М	omentum	Ener	rgy
			2K POL	1.72 K				2.552 5	cav9	cav10 cav	v11 cav12	BH1:	0.12 Me	V/c	NaN MeV
			80K anchor#1: 1	20.030 K								BH2:	8.65 Me	V/c	8.13 MeV
		zh		23.330 K											
		igh	(100) 174 105	1b			Car	08 Pt FACC	0.475	IV/m CM2	a				COMPANIES AND

TTF-V power coupler for ILC as Japan-France collaboration

RF condition	Achieved power [kW]
<400 µsec/5Hz	2000
>800 µsec/5Hz	500

Toward higher RF power and longer RF pulse

If you think of higher power and longer pulse, you can consider the change of following parameters.

RF power/RF duty	ILC	Higher/Longer			
Purity of Al ₂ O ₃	> 95%	> 99%			
Dielectric loss tangent	~10 ⁻⁴ @1GHz	~10 ⁻⁵ @1GHz			
Secondary electron emission coefficient	<~2 (w/ TiN coating)	<~2 (w/ TiN coating)			
Thickness of copper plating	10 µm	>10 µm			

(Additionally) Toward higher beam current

If you think of higher beam current, you can consider power supply from two power couplers.

At the GDE era, beam operation of 9 mA has been done at TTF in DESY.