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20
22 Introduction

• This talk is not about the Muon Collider

• This talk has been about fast non-mechanical tuning of RF cavities

• Concept is FE-FRT: Ferroelectric Fast Reactive Tuners


• This talk is to show an ongoing program based at CERN

• Development and application of FE-FRTs 


• Beam Loading compensation,  Microphonics Suppression, Power savings

• Focus: Transient Detuning Demonstrator for LHC 400 MHz Nb-on-Copper Cavity 
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20
22 Non-Mechanical Tuners: Not a new idea

• Non Mechanical Tuners: tuning by reactance

• Use terminated transmission line attached to cavity & modify line reactance

• Reflected RF couples back to cavity induced phase shift => indues a net frequency shift


•

3

Pin Diode Tuners Ferrite Tuners

Diode switching alternates sign 
of reactance. 

Frequency control by pulse-
width modulation.

C. Vollinger and F. Caspers, Ferrite-tuner Development for 80 MHz 
Single-Cell RF-Cavity Using Orthogonally Biased Garnets, IPAC 15.

O. Despe, K. Johnson and T.~Khoe, IEEE Trans. Nucl. Sci.,vol. 20 1973. 

D. Schulze et al., Proton Linear Accelerator Conf, 1972

Ferrite stub to moderate reactance  

Frequency control by external coil.
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20
22

Fast Reactive Tuner Concepts
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20
22 Overview: Fast Reactive Tuner (FRT)

• FRT is a shorted transmission line attached directly to the cavity

• FRT stub contains a dielectric phase shifter element  => modifies reactance

• Phase shifted RF, when reflected back into the cavity, results in a frequency shift


• Ferroelectric FRT: Ferroelectric ceramic is mechanism for fast phase shifts 

• Device has a controllable permittivity, based on HV biasing across ceramic


• Observations

• FRT: a 1-port device attached directly to cavities => normally FRTs would require a dedicated cavity port

• FRT: short transmission line segment => Can be installed outside cold volume of cryomodule 

• FRTs do not mechanically deform cavity

• FRTs are fast by design  => Applicable to cavity frequency tuning loops

5

Cavity
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20
22 Ferroelectric Ceramics at heart of FRT

• BST(M)  Ceramic: BaTiO3 - SrTiO3 (BST) with Mg-based additives

• Relative Permittivity εr can be controlled by application of voltage


=> Machinable ceramic with very low loss tangent

=> Material response time is very fast  (~10 ns) => ideal for fast feedback tuning systems

6

Parameter Value
Relative Permittivity 160
Tunability of Permittivity 1.4
Breakdown Strength 20 Vµm-1

Thermal Conductivity 7.02 Wm-1K-1

Response time to HV pulse 10 ns
Typical loss tangent (tanδ)  8x 10-4 @400 MHz
Broad low loss tangent range  10 MHz - 10 GHz

Potential  FRT material



Fa
st

 R
ea

ct
iv

e 
Tu

ne
rs

: A
. M

ac
ph

er
so

n 
- M

uo
n 

C
ol

lid
er

 C
ol

la
bo

ra
tio

n 
M

ee
tin

g 
12

/1
0/

20
22 FRT: Equivalent Circuit Description

• Change in frequency between bias states n and m


• Change in System bandwidth due to FE-FRT in bias state 


• Susceptance Bt is our controllable  “knob” =>

• Change in HV bias of ceramic => change in εr = change in Bt


• Figure-of-Merit (FoM) for evaluating a tuner


• Large tunability => large  Δεr => susceptance over sustainable HV range of ceramic 

• Minimal power dissipation => minimise conductance  => compact device & low loss ceramic

7

Cavity FRT

Notation Meaning

                Conductance of FE-FRT

Susceptance of FE-FRT

Coupler turn ratio

Cavity voltage

Cavity stored energy
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20
22 FE-FRT: When to use One

• Scenarios when an FE-FRT could be applicable:

• Tuning speed is paramount

• An extremely stable frequency must be maintained

• Tuning range is small to moderate

• Mechanical tuning is not possible/desirable: potential for tuning of thin film SRF cavities


• FE-FRT Tuning range guideline: 


• Larger proportional tuning ranges easier at lower frequencies

• FoM: Expect values in the 10 - 100  range


• When not to use an FE-FRT solution:

• If fast tuning is not required

• If there is no available cavity port


• integration with FPC or HoM ports invites complications

• If a very large tuning range is required

8

∆ 𝑓
𝑓0

≪
100
𝑄𝐿

QL= Loaded Q of cavity
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20
22 FE-FRT: Tuning use cases

• Adjustable Tuning

• Frequency correction is variable  & continuously updated


• uses fast response of FRT to “correct” cavity frequency


• Use case: Suppression of microphonics noise spectrum

• Cavities not operated in heavily over-coupled state


=> Potential for significant operation power savings 

=> Potential for improved cavity stability


• Discrete Tuning

• Switching between well defined cavity frequency states


• uses fast response of FRT to switch cavity config 


• Use case: Compensation of beam loading

• Switching cavity config between beam & no beam segments


• Does so with modifying the RF bucket length

=> Potential for significant operation power savings at injection

9

LHeC

PERLE

ERL Case study estimates
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20
22 FE-FRT for Microphonics Suppression

•  Microphonics contribution to required RF power


• Low beam loading machines:  RF power can be dominated by microphonics

• Suppression of microphonics can be both passive and/or active


• Stiffening of cavity & Isolation of noise sources & active feedback systems 

• Residual microphonics requires over-coupled RF power inputs


• Broadened resonance buffers against perturbations, but at cost of RF power budget


• Alternative: microphonics suppression by FRTs

• High Tuning speed: measured ~600 ns due to  external HV

• No excitation of mechanical modes

• Possibility of significant RF power reduction


• Peak power reduced by factor FoM/2

• Average power reduced by factor FoM/4 


• Can be combined with other suppression technologies

10

PRF =
V2

c

4R/QQL

β + 1
β [1 + (2QL

Δωμ

ω0
)]  Δωµ = microphonics frequency source

PRF vs. QFPC for PERLE. Without FE-FRT and with FE-FRT.

Case study for PERLE: Power reductions 
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20
22

Examples and Prototypes
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20
22  FE-FRT Prototype -  Initial tests on 374 MHz SRF cavity

• Initial prototype FRT:  Based on simple  coaxial ceramic section

12

P
IC

K
-U

P

Example: Microphonics suppression - external 37 Hz vibration  source 

37 Hz

F
No correction

With correction

• Integrated microphonics spectral density up to 1kHz 

• Microphonics reduced by factor ~14

τ =
QL

ω0
≈ 46 ms

• Cavity response to tuner 

• < 50 µs 


• Cavity time constant   

Tuner much faster than cavity



Fa
st

 R
ea

ct
iv

e 
Tu

ne
rs

: A
. M

ac
ph

er
so

n 
- M

uo
n 

C
ol

lid
er

 C
ol

la
bo

ra
tio

n 
M

ee
tin

g 
12

/1
0/

20
22  FE-FRT Prototype -  also a slow tuner

• Basic tuning functionality

• Corrected slow frequency variations from helium bath pressure fluctuations

• Frequency quickly corrected to target


• Long term slow tuning 

• can be written into tuning loop

13

P
IC

K
-U

P

Helium bath Influence on 
cavity frequency

“Slow” tuning loop with 
FE-FRT prototype
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20
22 Microphonics Suppression:

• Simple Integral feedback algorithm 

• Phase delay is dominated by algorithm and HV amplifier


• Loop Gain critical frequency ~5.6 kHz

• microphonics suppression feasible in 0 - few kHz range

14

Induced with  866 Hz 
vibration generator

Schematic of setup

Loop Gain vs frequency
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20
22 Transient Detuning Project: Overview

• Concern: HL-LHC may lack RF power to capture full beam current at injection

• Options: Install high efficiency Klystrons   or    Add cryomodules   or    Transient detuning with FE-FRT


• Ideal: Perfect compensation of beam loading by FRT => reduce RF power 10-fold

• FE-FRT to handle high reactive power ~500kVar

• If Qe of FPC is increased by optimal amount

• Partial compensation gives significant reductions


• If proven feasible …

• Transient detuning is elegant solution

• Electricity saving up to ~ 2GWh per year 


• ~1M€ (estimate from French electricity cost)


• Aim: demonstrate FRT based Transient Detuning

•  Show feasibility for HL-LHC at injection


• R&D activity ongoing at CERN

15

Estimated power reduction vs achievable 
tuning range with transient detuning
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20
22 FE-FRT for Beam Loading Compensation

• Transient Detuning Concept: 

• Fast frequency switching between bunch trains to minimise required RF power (PRF)


• Potential power savings over present half-detuning scheme used at LHC injection settings


• Required RF generator Power 


• Beam loading => Ib changes => either increased PRF or cavity phase errors

• Transient detuning: Use tunable ΔωD to cancel (Φ’c - ΔωD)  => frequency switching in no-beam segments


• For LHC, accessible bunch train gaps are 200 and 800 ns duration

• Increased phase stability and fixed RF bucket position => ideal for injection schemes

• Potential to reduced average PRF   by up to FoM/2

16

CavityFE-FRT Beam
RF Generator Notation Meaning

RF power
                Cavity phase derivative

Detuning

Beam current
Assumes
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20
22 TDD: First Prototype

• TDD: Ongoing R&D

• RF design: Coupled cavity-FRT mode scheme


• => Larger tuning range with smaller antenna


• Discontinuous tuning range 

• FRT resonance jumped across cavity resonance

• Not for microphonics suppression


• Coupled Mode Ferroelectric Core: 

• Based on thin wafers of ferroelectric in vacuum


• reduced losses + higher biasing electric fields

• Compression based assembly to unnecessary losses


• Initial prototype:  TDD_0 

• Installed on spare LHC 400 MHz SRF cavity & under test at CERN


• Design concept validated

• Initial 1.3kHz tuning shift observed with only 500V bias

17

Sample Ceramic: Optical polish surface finish

surfae area of 75 mm2 to set capacitance 
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20
22 TDD_0: Concept design validation of TDD

18

TDD_0: Design vs Reality 

Preparation of RF Test - Oct 2022

TDD_0

E-field (dB scale)
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20
22 Transient Detuning Demonstrator (TDD)

• Full Prototype: TDD_1 

• RF and mechanical design ongoing


• Designed for 1-16kV operation, target tuning range of 18 kHz

• Focus on compression fit assembly of ceramics 

• Management of power dissipation & cooling circuits

• Including integration considerations => must be compact!


• We have to reverse engineer device into a LHC cryomodule


• Developed on the way …

• Copy of LHC-LLRF system in stand-alone mode

• BLEEP (Beam Loading Electronic Emulation Project)


• BLEEP already tested on SRF cavity

• Emulates beam by injecting additional power into cavity


• HV pulser: Off-the-shelf product

• 10 kV with 160 kHz rep rate for 10ms burst into 2nF load


=> correlates  to > 100 LHC beam revolutions


• TDD_1  validation at CERN expected mid 2023
19

1/4 CM - LHC cavity

Transient Detuning: RF switching in bunch train gaps
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20
22 Summary

• This talk is  not about the Muon Colliders

• This talk has been  about fast non-mecanhical tuning of RF cavities

• Based on reactive tuning using dielectric stub attached to a cavity

• Concept is FE-FRT: Ferroelectric Fast reactive Tuners


• An active FE-FRT development program is ongoing at CERN 

• Multiple applications and uses cases of FE-FRTs are possible


• Beam Loading compensation,  Microphonics Suppression, Power savings, Slow Tuning


• CERN’s Primary Use case is Transient Detuning

• Transient Detuning Demonstrator on spare LHC SRF cavity: 


• R&D is ongoing  and validation expected mid 2023


• Question: Are FE-FRTs applicable to the Muon Collider?

• Expect the answer to be yes, but would welcome opportunity to see your cavity tuning needs


• Hope this has given you a taste for FE-FRTs.

20



Fa
st

 R
ea

ct
iv

e 
Tu

ne
rs

: A
. M

ac
ph

er
so

n 
- M

uo
n 

C
ol

lid
er

  C
ol

la
bo

ra
tio

n 
M

ee
tin

g 
12

/1
0/

20
22

Spare Slides



Fa
st

 R
ea

ct
iv

e 
Tu

ne
rs

: A
. M

ac
ph

er
so

n 
- M

uo
n 

C
ol

lid
er

 C
ol

la
bo

ra
tio

n 
M

ee
tin

g 
12

/1
0/

20
22 Mechanical Tuning of  RF cavities

• Mechanical Tuning

• Controllable mechanical tuning by purely mechanical structures


• Large tuning range but tuning is slow

• Good for correcting large static or slowly varying frequency deviations 


• From manufacturing errors

• Cryomodule pressure variations


• Hybrid tuning: Piezo Tuners 

• Controllable mechanical tuning by piezo ceramics: tuning controlled by applied voltages


• Mature Technology with faster response times

• Smaller max. load  and smaller max. tuning range


• Often combined with mechanical tuners


• Can partially mitigate microphonics and Lorentz Force Detuning

• Limited system tuning speed

• Complicated Transfer Functions with excitation of mechanical modes

22

Piezo equipped INFN blade tuner. 

“ILC COAXIAL BLADE TUNER” C. Pagini et al.

LHC  Compression Tuner
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20
22

• FoM: Quantifiable quantity for comparison of FE-FRT designs

• Standard Material definition converted to system ( Cavity + tuner) definition

• System FoM independent of cavity, coupler turn ratio, transformation by lossless Transmission line etc


FoM: Assessing Performance

23

BWn =  increase of bandwidth due to FRT in state n

FoM in terms of equivalent circuit parameters

FoM in terms of cavity stored energy & power dissipated in FRT

QnFRT is contribution of FE-FRT to system QL in state n

FoM in terms of S11 phase and amplitude of FE-FRT

Material definiton

System definiton

• Material FoM 


• Independent of capacitor geometry


•  always larger than System FoM
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20
22 FE-FRT Concept

• FE-FRT: embed ferro-electric in shorted transmission line 

• FoM  is  independent of FE-FRT line length 

• Operating ω defined by line length, 


• but  Δω12 ( ~ ΔB) is set by FE-FRT antenna coupling

• Line length defines operational configuration an FRT


• Rotates impedance around the Smith Chart


• Moving away from OPEN:

• more reactive power, increased shift from ω0, decreased QL


• => Optimisation of line length matched to performance requirements

24
QL↓ B ↑

QL↓ B ↑

SHORT OPEN
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20
22 Setup of Microphonics test cryostat & hardware

25


