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Introduction
e This talk is not about the Muon Collider

* This talk has been about fast non-mechanical tuning of RF cavities
 Concept is FE-FRT: Ferroelectric Fast Reactive Tuners

 This talk is to show an ongoing program based at CERN
 Development and application of FE-FRTs
 Beam Loading compensation, Microphonics Suppression, Power savings
» Focus: Transient Detuning Demonstrator for LHC 400 MHz Nb-on-Copper Cavity
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Non-Mechanical Tuners: Not a new Idea

* Non Mechanical Tuners: tuning by reactance
» Use terminated transmission line attached to cavity & modify line reactance
e Reflected RF couples back to cavity induced phase shift => indues a net frequency shift

D
to PIN -diodes C

1y AL
L
Pin Diode Tuners

Ferrite stub to moderate reactance
Frequency control by external coil.

Diode switching alternates sign
of reactance.

Frequency control by pulse-
width modulation.

Ferrite Tuners

O. Despe, K. Johnson and T.~Khoe, IEEE Trans. Nucl. Sci.,vol. 20 1973. C. Vollinger and F. Caspers, Ferrite-tuner Development for 80 MHz

D. Schulze et al., Proton Linear Accelerator Conf, 1972

Single-Cell RF-Cavity Using Orthogonally Biased Garnets, IPAC 15.



Fast Reactive Tuner Concepts
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Overview: Fast Reactive Tuner (FRT)

* FRT is a shorted transmission line attached directly to the cavity
* FRT stub contains a dielectric phase shifter element => modifies reactance
 Phase shifted RF, when reflected back into the cavity, results in a frequency shift

il 11
il 11

 Ferroelectric FRT: Ferroelectric ceramic is mechanism for fast phase shifts
* Device has a controllable permittivity, based on HV biasing across ceramic

* Observations
 FRT: a 1-port device attached directly to cavities => normally FRTs would require a dedicated cavity port
* FRT: short transmission line segment => Can be installed outside cold volume of cryomodule
 FRTs do not mechanically deform cavity
 FRTs are fast by design => Applicable to cavity frequency tuning loops
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Ferroelectric Ceramics at heart of FRT
e BST(M) Ceramic: BaTiO3 - SrTiO3 (BST) with Mg-based additives

 Relative Permittivity €- can be controlled by application of voltage
=> Machinable ceramic with very low loss tangent
=> Material response time is very fast (~10 ns) => ideal for fast feedback tuning systems

(Ba, Sr)TiO,+Mg oxides  —> Breakdown 20V/um

16 - i T 2500 N
T o,
P ‘ \ %
o I S
= Potential FRT material| | *'m ™\ o
%E 14 \“- o;— - — \\ 45
- T4V .| 0
=l s E
o | 3" ' : Achievable material ~U L |« / = Relative Permittivity 160
f= © | =y tand | © - i s
0 : - L . *=  Tunability of Permittivity 1.4
0 //J/ - 5V 2 Breakdown Strength 20 Vum-!
e /,‘ %//’ T T - @ Thermal Conductivity 7.02 Wm-1K-1
B / T Y g Response time to HV pulse 10 ns
N\ : 8 Typical loss tangent (tand) 8x 104 @400 MHz
e(V=0) Broad low loss tangent range 10 MHz - 10 GHz

UChd BST(M), \ record low values of dielectric constant and loss tangent at relatively high
nteryd £~50-150 tunability level required for high power bulk tuner operating in air (< 30
kV/cm) and in vacuum ( up to 80 kV/cm). 6
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FRT: Equivalent Circuit Description

e Change in frequency between bias states n and m T
_MOR/QABI{mn ] ) .
A(U-;n,n —_— 2A.TQ G t
 Change in System bandwidth due to FE-FRT in bias state
R ; N:1
. &o / Ttn o , V2
B\'\"’n — ]\?22 : U \/TC R/Q = L/C — 2UJ U
e Susceptance B is our controllable “knob” =>Y, = G, + B,
» Change in HV bias of ceramic => change in & = change in Bt e SR AR

Susceptance of FE-FRT

=

t
Coupler turn ratio

 Figure-of-Merit (FoM) for evaluating a tuner

Cavity voltage

S = o=

Cavity stored energy

Tuning Range
FoM = 5 75

Geometric Average of increase in BW

» Large tunability => large Agr => susceptance over sustainable HV range of ceramic
* Minimal power dissipation => minimise conductance => compact device & low loss ceramic

AN
AN
()
AN
S~
(@)
S
S~~~
AN
)
(@))
S
-
)
)
=
C
O
e
(©
| .
O
O
©
O
@)
|
)
O
[e)
@)
C
O
>
=
|
(-
@
(7))
| S
)
i
Q.
O
(©
=
<C
)
| S
)
-
-
I_
)
=
e
O
(©
)
e
-
7))
©
LL
=
i
@

)



FE-FRT: When to use One

e Scenarios when an FE-FRT could be applicable:
* Tuning speed is paramount
* An extremely stable frequency must be maintained
* Tuning range is small to moderate
» Mechanical tuning is not possible/desirable: potential for tuning of thin film SRF cavities

 FE-FRT Tuning range guideline: A 100 Q.= Loaded Q of cavity
Jo O;
» Larger proportional tuning ranges easier at lower frequencies 60 | |
* FoM: Expect values in the 10 - 100 range Mgoffmkadicents | |
S 40l N\ CresenteRHiCdesign

 When not to use an FE-FRT solution: 5 30 N

 If fast tuning is not required § 20 ' i

* If there is no available cavity port =10 g

» integration with FPC or HoM ports invites complications 200 600 800 1000 1200 1400 1600
» |f a very large tuning range is required Cavity Frequency [MHz]
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FE-FRT: Tuning use cases

m m ) 60 Previous eRHIC'design ‘
® AdJUStabIe Tunlng Eigh Presen:teRHICdesign |
» Frequency correction is variable & continuously updated 9 30 -
T T . o _ _ erlinPro v FeL
» uses fast response of FRT to “correct” cavity frequency =

%00 600 800 1000 1200 1400 1600
Cavity Frequency [MHz]

PERLE

B \Without FE-FRT |:
B \Vith FE-FRT ‘

e Use case: Suppression of microphonics noise spectrum
» Cavities not operated in heavily over-coupled state
=> Potential for significant operation power savings
=> Potential for improved cavity stability

[
o
(=)}
~
¥
~
s

—
o
w

Power [W]

103 EITOtt:a'I I P;sl;Fwd. ﬁ\llng.,Fwd.
® Discrete Tuning Power perliz:litprerCavity
g =
107 —— , .
 Switching between well defined cavity frequency states o7l W |™m Without FE-FRT |,
. . _ E Bl With FE-FRT
» uses fast response of FRT to switch cavity config =1
21
“ 100
 Use case: Compensation of beam loading 10°L e
«  Switching cavity config between beam & no beam segments TPower  per Cautyper Caviy
» Does so with modifying the RF bucket length ERL Case study estimates

=> Potential for significant operation power savings at injection
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FE-FRT for Microphonics Suppression

e Microphonics contrilgution to required RF power
V: o p+1

P, =
UARL,0, B

[1 + (20, Aww” )] Aw, = microphonics frequency source
0

* Low beam loading machines: RF power can be dominated by microphonics
* Suppression of microphonics can be both passive and/or active
« Stiffening of cavity & Isolation of noise sources & active feedback systems
* Residual microphonics requires over-coupled RF power inputs
 Broadened resonance buffers against perturbations, but at cost of RF power budget

50
o Alternative: microphonics suppression by FRTs 2 40| — ':g:;’;‘jf L
« High Tuning speed: measured ~600 ns due to external HV 3 30 ee FEFRTAf. 0.5
* No excitation of mechanical modes £ 5ol FE-FRT A fyes =1
» Possibility of significant RF power reduction § 10l
» Peak power reduced by factor FoM/2 & o Tem——
« Average power reduced by factor FoM/4 105 10’ 5?: 10° 107

« (Can be combined with other suppression technologies

Pgr VS. Qpp for PERLE. Without FE-FRT and with FE-FRT.

Case study for PERLE: Power reductions
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Examples and Prototypes
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FE-FRT Prototype - Initial tests on 374 MHz SRF cavity

* |nitial orototvbe FRT: Based on simple coaxial ceramic section
\-

Cavity Coupler

%

Change in Frequency [HZ]

Tuner 1071 —— error function fit
|
[p—— )
'T1 I. T2 i T3 A T4 A T5 i | T6 . 10 and 90% levels
o 4 ~ - e Term T T \
Cavity/tuner ?urtof ;erroelectric Matching  RFShort HV Line 5C 2oty Input -4 -2 0 2
connection uner ection Saection .
Impedance Time [ms]

Example: Microphonics suppression - external 37 Hz vibration source

Frequency

Frequency vs time

i

(N

|
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— Feedback off
— Feedback on

i

0.00
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0.50

0.75
Time [s]

1.00
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Integrated Spectral Density [Hz]
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o
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o

NN
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Q

Integrated Microphonics Spectrum

1 —— Feedback On

—— Feedback Off

No correction
With correction
0 200 400 600 800 1000 1200

"Microphonics" Freauency [Hz]

e Integrated microphonics spectral density up to 1kHz
e Microphonics reduced by factor ~14

FE-FRT &

i

U

A

1 b
o

Stage

Transmissi}ﬁn g T

Tuner much faster than cavity

e Cavity response to tuner
e <50 us

e Cavity time constant

T SR, High V0|i}a£ew:

) Ny 2
¥ s ; Il sl
WEE Al SR 4 /i =7 ¥ 'J & L ] e
‘ Vel I B | BR P
| i « 1 & 1 &
! i 3 )ry; - ] 31 - R
11 | e |
A HE 3 “he 0
| I’. ]
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; ~ :
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RF Power

PICK-UP
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FE-FRT Prototype - also a slow tuner

 Basic tuning functionality
e Corrected slow frequency variations from helium bath pressure fluctuations
* Frequency quickly corrected to target

 Long term slow tuning
* can be written into tuning loop

RF Power

FE-FRT

Cryomodule

PICK-UP

Change in Frequency [Hz]

« data
- Line of best fil

127 128 129 130 131
Pressure [bar]

Helium bath Influence on
cavity frequency

fcavity — frarget IN [KHZ]

Af =

o
=
o

0.08 -

O
o
)

©
o
=

©
)
N

O
o
o

- == Target —— Measured Af

FRT HV

FRT HV
ON ON
———————————— &‘MM—————————W—-
0 1 2 3 4 5

Time [minutes]

“Slow” tuning loop with
FE-FRT prototype
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Microphonics Suppression:

* Simple Integral feedback algorithm Loop Gain vs frequency
* Phase delay is dominated by algorithm and HV amplifier - —— .
_ —— Measure
 Loop Gain critical frequency ~5.6 kHz - —— Modeled
. . . . . - ! ---- Gain at crit. freq. ~ 0.052
* microphonics suppression feasible in 0 - few kHz range |5 Sl
0.5 4 ===+ Micorphonics Spectrum Feedback Off §10_1
- Micorphonics Spectrum Feedback On =
-+ Predicted Micorphonics Spectrum with Feedback On ;
0.4 -
02 100 10
0.3 Induced with 866 Hz Modulation Frequency [Hz]

vibration generator '

SEL

RF Amp,

o
N
L L LR R R R R L E T

Amplitude Spectral Density [Hz]

— FRT Signal Paths
— RF Signal Paths

@ Alg. *|HV Amp. { FRT J > Cavity

|
|
a4

0 200 400 600 800 1000
Microphonics Frequency [Hz] —

N
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Transient Detuning Project: Overview

e Concern: HL-LHC may lack RF power to capture full beam current at injection
* Options: Install high efficiency Klystrons or Add cryomodules or Transient detuning with FE-FRT

* |ldeal: Perfect compensation of beam loading by FRT => reduce RF power 10-fold
 FE-FRT to handle high reactive power ~500kVar
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S

N
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N

£

©
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>

©

8

s e |f Qe Of FPC IS iIncreased by Opt|ma| amount —— Pgey: Trans Detuning with Q'  ---- FE-FRT Peak Reactive power [kVar]

i) _ ] ] ] . ) Pgen: Trans Detuning - Q977 -===« 100 x FE-FRT Dissipated power [KW]

3  Partial compensation gives significant reductions Expected max Klystron power

S 350 700

= -]

= - 600

cc) . E Ll AL _._._._;:%..

4 + |f proven feasible ... p 2>y

c : : : : ®;

5 « Transient detuning is elegant solution S . 4°°§
.. . . €l |

i  Electricity saving up to ~ 2GWh per year 2 1507 2300

— 3. w

2 « ~1ME€ (estimate from French electricity cost) e 100 j [200%

O

= O s50; i 100

— o r

) [ | u u -P‘" v r v v T . v l

= ° Aim: demonstrate FRT based Transient Detuning 0 25 50 75 100 llkz.s] 150 175 200

© (g .. : Tuning Range [kHz

@ « Show feasibility for HL-LHC at injection

e .- . : Estimated power reduction vs achievable

7P

T * R&D activity ongoing at CERN tuning range with transient detuning



FE-FRT for Beam Loading Compensation

 Transient Detuning Concept:
 Fast frequency switching between bunch trains to minimise required RF power (Pkr)
» Potential power savings over present half-detuning scheme used at LHC injection settings

FE-FRT Beam Cavity
T T RS BEEEEEEEEE EEEEEEEE I RF Generator
: I A ; Prr RF power
E E E E E J E ¢/c Cavity phase derivative
By Gy i b L C Ge : %6) E > Ge E Awp Detuning
: X X : : | : I, Beam current
. ' - : '________________r_______________: Assumes V! =0 A¢p. =0

e Required RF generator Power

BoQ. (| v V. | " [ v | 1’
e ( iy ¥ Qe oA | [y (0~ ) e ) P Por = A+ (B, - Awp) - CLJ
 Beam loading => I, changes => either increased Pgr Or cavity phase errors
» Transient detuning: Use tunable Awp to cancel (®’c - Awp) => frequency switching in no-beam segments
 For LHC, accessible bunch train gaps are 200 and 800 ns duration

* Increased phase stability and fixed RF bucket position => ideal for injection schemes
» Potential to reduced average Prr by up to FOM/2
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TDD: First Prototype

e TDD: Ongoing R&D
* RF design: Coupled cavity-FRT mode scheme
 => Larger tuning range with smaller antenna

* Discontinuous tuning range
 FRT resonance jumped across cavity resonance
* Not for microphonics suppression

Sample Ceramic: Optical polish surface finish
» Coupled Mode Ferroelectric Core: surfae area of 75 mm? to set capacitance

e Based on thin wafers of ferroelectric in vacuum
* reduced losses + higher biasing electric fields

| | | L
250V tuning shift: 170.0 Hz | i1
1-1 500V tuning shift: 1330.0 Hz| : :

I
N

 Compression based assembly to unnecessary losses — 3
. Initial prototype: TDD 0 ~—
 Installed on spare LHC 400 MHz SRF cavity & under test at CERN -7 — o
: DeSign concept Validated :$OOOO —7500 -5000 -2500 O: : 2500 5000 ;OZSOIO—OOO
 Initial 1.3kHz tuning shift observed with only 500V bias Atlnz
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TDD 0: Concept design validation of TDD

. & o =
o [ mmm (]

1
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>

Preparation of RF Test - Oct 222

E-field (dB scale)
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Transient Detuning Demonstrator (TDD)
. FuII Prototype: TDD 1

RF and mechanical design ongoing
 Designed for 1-16kV operation, target tuning range of 18 kHz
* Focus on compression fit assembly of ceramics
 Management of power dissipation & cooling circuits
* Including integration considerations => must be compact!
* \We have to reverse engineer device into a LHC cryomodule

* Developed on the way ...

 Copy of LHC-LLRF system in stand-alone mode

« BLEEP (Beam Loading Electronic Emulation Project)
 BLEEP already tested on SRF cavity
 Emulates beam by injecting additional power into cavity

* HV pulser: Off-the-shelf product
e 10 kV with 160 kHz rep rate for 10ms burst into 2nF load

=> correlates to > 100 LHC beam revolutions

At
o

=
Ul

—— Beam Current

=
o

—— Detuning

uning [kHZz]

RF Beam Current [A]
=
oun

O
o

. TDD 1 validation at CERN expected mid 2023 o s m B0 &

Time [us]
Transient Detuning: RF switching in bunch train gaps 19
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Summary

 This talk is not about the Muon Colliders
* This talk has been about fast non-mecanhical tuning of RF cavities
 Based on reactive tuning using dielectric stub attached to a cavity
 Concept is FE-FRT: Ferroelectric Fast reactive Tuners

 An active FE-FRT development program is ongoing at CERN
* Multiple applications and uses cases of FE-FRTs are possible
 Beam Loading compensation, Microphonics Suppression, Power savings, Slow Tuning

* CERN’s Primary Use case is Transient Detuning
* Transient Detuning Demonstrator on spare LHC SRF cavity:
 R&D is ongoing and validation expected mid 2023

* Question: Are FE-FRTs applicable to the Muon Collider?

* EXxpect the answer to be yes, but would welcome opportunity to see your cavity tuning needs
* Hope this has given you a taste for FE-FRTSs.
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Spare Slides
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Mechanical Tuning of RF cavities

* Mechanical Tuning
» Controllable mechanical tuning by purely mechanical structures
 Large tuning range but tuning is slow
» (Good for correcting large static or slowly varying frequency deviations
* From manufacturing errors
 Cryomodule pressure variations

LHC Compression Tuner

 Hybrid tuning: Piezo Tuners
» Controllable mechanical tuning by piezo ceramics: tuning controlled by applied voltages

* Mature Technology with faster response times
 Smaller max. load and smaller max. tuning range

 Often combined with mechanical tuners

» Can partially mitigate microphonics and Lorentz Force Detuning
* Limited system tuning speed
 Complicated Transfer Functions with excitation of mechanical modes

Piezo equipped INFN blade tuner.
“ILC COAXIAL BLADE TUNER” C. Pagini et al.
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FoM: Assessing Performance

 FoM: Quantifiable quantity for comparison of FE-FRT designs
« Standard Material definition converted to system ( Cavity + tuner) definition
+ System FoM independent of cavity, coupler turn ratio, transformation by lossless Transmission line etc

Tuning Range

System definiton FoM = : : :
J Geometric Average of increase in BW
T |Aw 2| . : :
FoM = JBW.BW BW, = increase of bandwidth due to FRT in state n
V1B Wo
Material definiton
. _|AByy)
FoM In </ €2 Fol = 2,/G, G, FoM in terms of equivalent circuit parameters
OVMIMat —
" 2tané
oM — _12¢12lUe
\/ PFRT pFRT FoM in terms of cavity stored energy & power dissipated in FRT
dissl ~ diss2

e Material FoM

Awnq: : o :
e Independent of capacitor geometry FoM = | 12| \/QfRTQgRT Q,FRT is contribution of FE-FRT to system Q, in state n
e always larger than System FoM wo

2| sin —Ag” |

V(1= [T1?) (1 = [T2f?)

FoM = FoM in terms of S;; phase and amplitude of FE-FRT

\
AN
-
AN
S~~~
o
D
S~~~
@\
D wan
(@)
=
)
O
)
=
-
9
)
©
| -
O
0O
©
[e)
O
| -
()
e,
[e)
O
C
O
)
=
1
-
O
(7))
-
(b
L
O
&)
©
=
<
7
-
O
C
)
|_
()
=
)
@)
(O
)
Y
)
7P
©
LL
0,
U/

23



FE-FRT Concept

* FE-FRT: embed ferro-electric in shorted transmission line i
 FoM is independent of FE-FRT line length
* QOperating w defined by line length,
* but Aw12 (~AB) is set by FE-FRT antenna coupling
» Line length defines operational configuration an FRT
* Rotates impedance around the Smith Chart

* Moving away from OPEN:
* more reactive power, increased shift from w0, decreased QL
» => Optimisation of line length matched to performance re
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Setup of Microphonics test cryostat & hardware

Control Console s
€<FR -
: <Transmitted—
Q- N
Local Oscillator : t RF Amplifier Circulator  Directional Coupler |
' Memory Buffers . N\
: + f D—N (
> | |
: LLRF -
Sampling frequency 5 Module | v‘ | ‘5
E *KTra '.
: < ‘-[
—): : >
‘ Splitter
K - VME Crate E
— Dlg |ta| Signal Source Analyser’
——P Spectrum Analyser <

Clocks
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