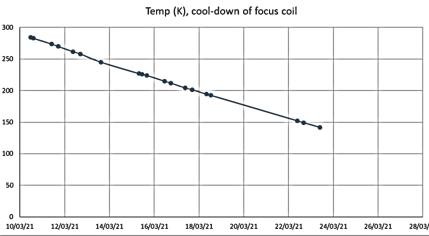


Technology Group 4T magnet

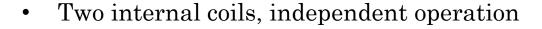
Josef Boehm October 2022

Magnet commissioning at RAL

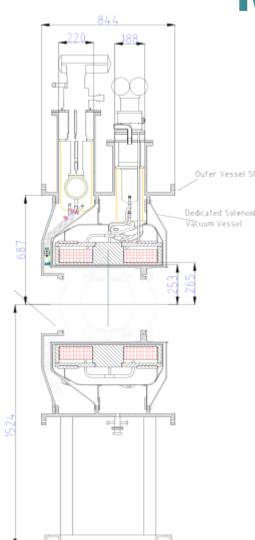


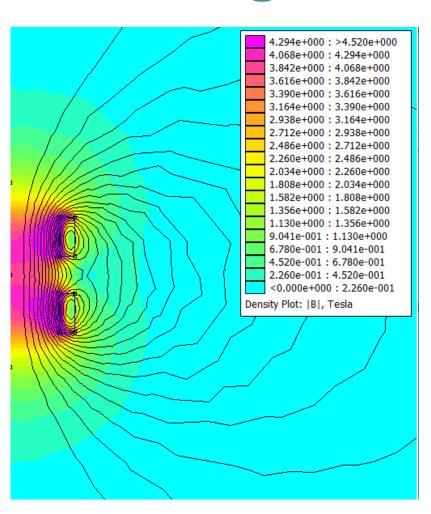
• Bore: ~450mm

• Field: 4T

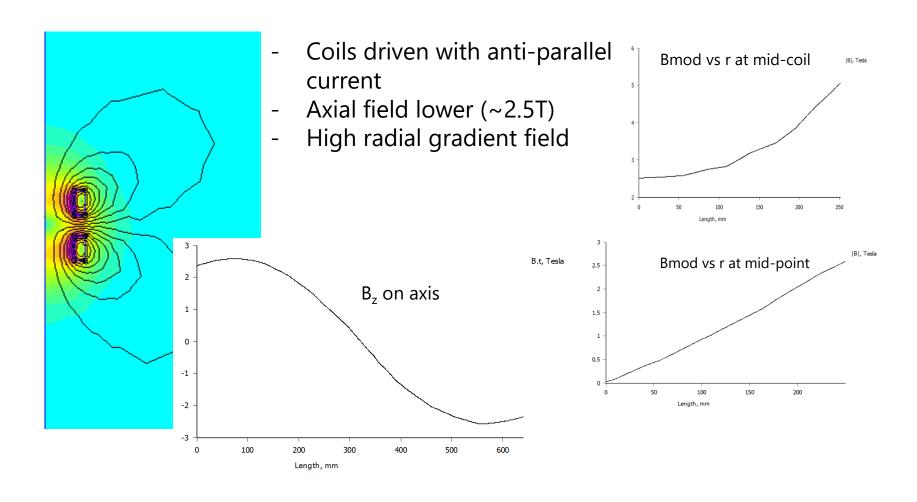

 Solenoid or cusp mode

• 3rd cold head for sample cooling

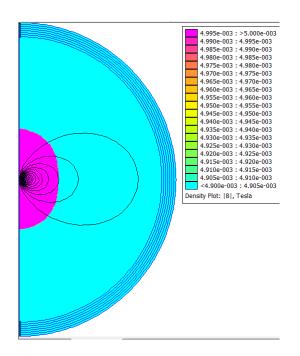

Magnet details

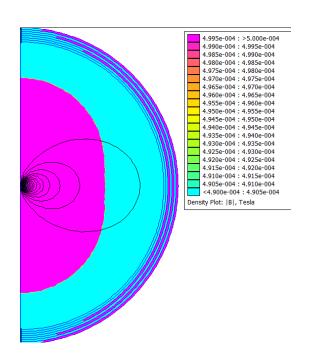


- In solenoid mode ~ 4T
- Bore diameter ~ 470 mm
- Can take large horizontal forces
- \sim 2MJ, 100H, 180A, ramp-time: \sim 1h
- 2 pulse tubes & compr., 3rd PT for insert cooling
- Dry cool-down ~ 2 weeks, quicker with liquids
- Once cold the cryostat is zero boil-off

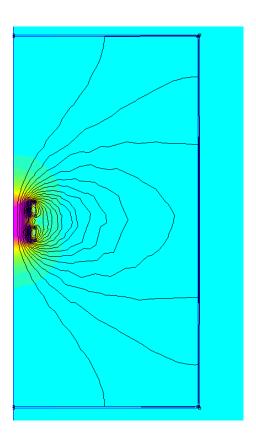

Magnetic flux lines

- Magnet in solenoid mode
- Centre flux density: 4T




Coils in split mode (cusp mode)

Stray fields (solenoid)



Stray field (4T setting)	@50G	@30G	@5G
from magnet centre			
Axial (m)	3.45	4.1	7.4
Radial (m)	2.7	3.2	5.9

Reducing the stray field

- Iron cladding on wall reduces extent of 5G-line from 5.9m to 3m (radial).
 This level can be optimised.
- Iron thickness here: 25mm
- Low carbon steel or silicon steel

Requirements to operate magnet

- ✓ Magnet in cryostat with two cryocoolers (pulse tubes)
- ✓ 2 compressors for PT's, Cryomech CP1000, 13 kW
- ✓ 20m gas lines
- Large building to operate the magnet, ~ 15m x 12m
- Control cabinet with PSU, temperature monitors, He-level monitor, switch gear
- Chilled water for compressors, ~ 15 20 l/min @ 15 degC
- Helium gas supply (gas cylinders), approx. 4 per run

Requirements to prepare the magnet

- The control cabinet will have to be assembled from existing and newly purchased components
- The quench protection circuitry will have to be assembled (resistors and diodes, on side of magnet)
- The magnet will have to be tested at RAL before shipment

A very coarse estimation of cost to restart an existing focus coil

Activity/Equipment	Effort	Material
FC magnet		£ 700k – existing
Checkout in UK	0.25	5k
QPS Refit		10k
Shipping		15k
Checkout in Paris	0.25	5k
Instrument Racks		100k
Cabling and sundries		10k