

IVERSITÀ DI BOLOGNA

Resistive magnets design studies

Marco Breschi¹, Rebecca Miceli¹, Pier Luigi Ribani¹ Fulvio Boattini², Luca Bottura²

¹Alma Mater Studiorum – Università di Bologna, Italy ²CERN, Geneva, Switzerland

Muon Collider Collaboration Annual Meeting CERN, Geneva, October 12th 2022

Outline

- Resistive dipole magnets specifications
- Analysis methodology
- Results of the three analyzed magnet configurations
	- **-** Windowframe magnet
	- **-** H-type magnet
	- **-** 'Hourglass' magnet from the US study
- Comparison of the three configurations
- Summary and perspectives

Resistive dipole magnets main specifications

• The **resistive dipole magnets** to be designed for the Muon Collider accelerator are characterized by the following main specifications:

1) Magnetic field in the aperture about **1.8 T**

2) Magnetic field homogeneity within 10 ✕ **10-4** in the good field region (**30 mm * 100 mm**)

3) Ramps from $\Box B_{max}$ to $+$ B_{max} in 1 ms. The objective for the value of B_{max} is 2.0 T

4) Limit the **magnet stored energy** (crucial design specification to limit the supplied power)

5) Limit the **total losses (iron + copper)**

Analysed magnet configurations

• In this preliminary study ³ main configurations are analyzed: **Windowframe magnet, ^H magnet, Hourglass magnet** (from the US study)

2) H magnet 3) 'Hourglass' magnet

J. Scott Berg and Holger Witte, "Pulsed synchrotrons for very rapid acceleration", AIP Conference Proceedings 1777, 100002 (2016); <https://doi.org/10.1063/1.496568>.

Study methodology: DC optimization

- The analysis is performed both in **DC and AC conditions,** in the frame of ^a 2D electromagnetic software (FEMM).
- ^A first optimization is performed in DC conditions, aimed at improving the field homogeneity in the good field region. The **objective function** to be optimized is the following:

$$
Field\ goodness = \frac{1}{B_{des}} \sqrt{\frac{1}{A_{gap}} \iint_{A_{gap}} \{ [By(x, y) - Bdes]^2 + [Bx(x, y)]^2 \} dA_{gap}}
$$

where B_{des} is the design value of the magnetic field in the center of the gap.

- The optimization is performed by using the MATLAB optimization toolbox and is based on the **interior point method** (function *fmincon*).
- The variables of the optimization are **geometric parameters**, while the current density is kept fixed
- Convergence is reached when the relative variation of all components of the vector of unknowns is less than 10-10 . The **typical number of iterations** to reach convergence is **100**.

Study methodology: AC analysis

The **design current profile** consists of a ramp from $-B_{max}$ to $+B_{max}$ in 1 ms. It is foreseen that this current profile will be provided by the power supply through the superposition of sinusoidal waves.

- The study in AC conditions starts from the geometric parameters defined in the DC optimization. The AC study is performed in the frequency domain: the coil currents are assumed **sinusoidal,** with a frequency of 500 Hz.
- Two approximations are made with the AC study:

1) the **linear ramp** is approximated as a **sinusoid**

2) the AC stationary conditions are assumed, which differ from the pulse followed by a standby time.

Windowframe magnet: geometry

Parameters:

- 1. Curatio = 0.8
- 2. $ygap = 0.03$ [m]
- 3. $xgap = 0.1$ [m]
- 4. $xgfr = xgap/2$
	- 5. $ygfr = ygap/2$
	- 6. $dcoil = 0.003$ [m]

Optimized variables (M-22 steel):

- 1. $|c1 = 35000 A$
- 2. $|c2 = 10500 \text{ A}$
- 3. $lc3 = 4500 A$
- 4. $ysh = 0.0012$ [m]
- 5. $xshup = 0.0167[m]$
- 6. xshratio =

xshup/xshdown = 0.3

Windowframe magnet: results with Supermendur in AC

• With Supermendur, having ^a **high saturation field,** ^a good agreement is found between the computed DC field (1.77 T) and AC field (1.76 T)

• The use of the Supermendur allows ^a reduction of the iron losses from **⁶⁴ kW/m to ¹⁸ kW/m** with respect to M-22 steel

ALMA MATER STUDIORUM

H magnet 3-coils configuration: geometry

induction coupling between different coils, a different configuration was analyzed.

Parameters:

- 1. $xgap = 100$ mm
- 2. $ygap = 30 mm$
- 3. $d = 3$ mm
- 4. $\alpha = 1.3$
- 5. $\text{c} = 12 \text{ A/mm}^2$

Optimized variables:

- 1. xfm
- 2. xfm1
- 3. yfm1
- 4. yfm2
- 5. xc10
- 6. xc1
- 7. yc1
- 8. xc2
	- 9. yc2 ($\text{xc3} = \text{xc2}$, $\text{yc3} = \text{yc2}$)

H magnet 3-coils configuration: results in AC

 $-0.13 -0.12 -0.11$

 -0.1

 $x(m)$

 -0.09

 $-0.08 - 0.07$

ALMA MATER STUD

350

300

250

200

150

100

50

0

 -50

 -100

- The current distribution is **more uniform** than in the windowframe magnet, which leads to lower losses in the copper
- ^A significant non-uniformity is still found in the **central coil,** which suggests its elimination

H magnet 2-coils configuration: geometry

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

H-Type magnet 2-coils configuration: results in AC

• ^A **more uniform current distribution** is obtained than in the configuration with 3 coils

160 140 The results reported in this plot correspond to 120 a current density set to **12 A/mm²** in the DC 100 optimization 80 • Only the total transport 60 current is kept fixed in the AC analysis

180

40

20

 -0.12

 $x(m)$

 -0.1

 -0.14

Hourglass magnet configuration: geometry

- In this analysis the same magnet dimensions adopted in the **US Muon Collider design study** have been considered
- Differently from the present configuration, the gap height is set to **25 mm instead of 30 mm**, while the gap length is set to **157 mm instead of 100 mm**
- **No further optimization** is applied to this configuration, as it results from the US study; in this analysis the coils are not subdivided into separate current sheets

Hourglass magnet configuration: results in AC

- **Current density** and **magnetic flux density** in the gap calculated in a.c. regime with $f = 500$ Hz, with Supermendur in the iron yoke
- ^A **very uniform current distribution** is found, except for the edges of the two coils

Comparison of the three analyzed configurations

- The **'hourglass' magnet** from the US study exhibits the **lowest real power (losses) and low reactive power**
- The windowframe magnet exhibits the **lowest reactive power**
- The H-magnets exhibit **lower copper losses** than the windowframe magnet

Summary and perspectives

- ^A **tool for the optimized analysis** of resistive magnets for the Muon Collider accelerator has been developed
- The **assumptions of this tool** will be carefully checked through other computation methods not requiring the AC approximation
- Three different configurations have been analyzed, namely the **windowframe magnet, the ^H type magnet** and **the 'hourglass' configuration** resulting from the US design study
- The '**hourglass' configuration** exhibits **low real and reactive power**, which indicates it already reached ^a very good level of optimization
- Further **optimization** will be applied to the newly proposed designs

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Thank you for your kind attention !

Marco Breschi, Rebecca Miceli, Pier Luigi Ribani Fulvio Boattini, Luca Bottura

marco.breschi@unibo.it

www.unibo.it

Windowframe magnet: M-22 steel vs Supermendur

M-22 steel

 $lc1$ max = 35.0 kA Vc1max = 789 V/m Fluxmax = 0.25 Wb/m Real Power = 1.35 MW/m Reactive Power = 13.7 MVar/m Cu losses = 110.6 kW/m

- $lc2max = 10.5 kA$ $Vc2max = 759 V/m$ Fluxmax = 0.24 Wb/m Real Power = 0.33 MW/m Reactive Power = 3.96 MVAr/m Cu losses = 501.6 kW/m
- $lc3max = 4.5 kA$ Vc3max = 680 V/m Fluxmax = 0.26 Wb/m Real Power = 0.057 MW/m Reactive Power = 1.53 MVAr/m Cu losses = 1068.8 kW/m

Fe loss = 64 kW/m

Supermendur

- $lclmax = 29.8$ [kA] $Vc1max = 676$ [V/m] Fluxmax = 0.22 [Wb/m] Real Power = 0.97 [MW/m] Reactive Power = 10.0 [MVar/m] Cu losses = 89.2 [kW/m]
- $lc2max = 8.9$ [kA] $Vc2max = 648$ [V/m] Fluxmax = 0.21 [Wb/m] Real Power = 0.23 [MW/m] Reactive Power = 2.88 [MVAr/m] Cu losses = 371.8 [kW/m]
- $lc3max = 3.8 [kA]$ Vc3max = 580 [V/m] Fluxmax = 0.22 [Wb/m] Real Power = 0.038 [MW/m] Reactive Power = 1.11 [MVAr/m] Cu losses = 757.3 [kW/m] **Fe loss = 18 [kW/m]**

H-Type magnet 2-coils configuration: results in AC

Nominal current density = 12 MA/m²

 $lclmax = 23.5$ [kA] $Vc1max = 1118 [V/m]$ Fluxmax = 0.356 [Wb/m] Real Power = 0.1006 [MW/m] Reactive Power = 13.134 [Mvar/m] Resistive loss = 45.104 [kW/m]

 $lc2max = 23.5$ [kA] $Vc2max = 1118$ [V/m] Fluxmax = 0.356 [Wb/m] Real Power = 0.1006 [MW/m] Reactive Power = 13.134 [MVAr/m] Resistive loss = 45.104 [kW/m]

Fe loss = 111.009 [kW/m] field energy in the gap $= 2.292$ [kJ/m] field energy in iron = 40.6 [J/m] field energy in air-in $= 1.838$ [kJ/m] field energy in coil 1 [J/m] = 5.0 [J/m] field energy in coil $2 \left[J/m \right] = 5.0 \left[J/m \right]$

Nominal current density = 10 MA/m²

 $lclmax = 22.7$ [kA] $Vc1max = 1064$ [V/m] Fluxmax = 0.339 [Wb/m] Real Power = 0.0904 [MW/m] Reactive Power = 12.107 [Mvar/m] Resistive loss = 42.714 [kW/m]

 $lc2max = 22.7$ [kA] $Vc2max = 1064$ [V/m] Fluxmax = 0.339 [Wb/m] Real Power = 0.0904 [MW/m] Reactive Power = 12.107 [MVAr/m] Resistive loss = 42.714 [kW/m]

Fe $loss = 95.434$ [kW/m] field energy in the gap $= 2.153$ [kJ/m] field energy in iron = 40.6 [J/m] field energy in air-in = 1.659 [kJ/m] field energy in coil 1 [J/m] = 4.7 [J/m] field energy in coil 2 [J/m] = 4.7 [J/m]

Comparison of the three analyzed configurations

- The **'hourglass' magnet** from the US study exhibits the **lowest real power**
- Among the newly developed designs, the windowframe magnet exhibits the **lowest value of reactive power**
- Due to ^a **more uniform current distribution,** the H-magnets exhibit lower copper losses than the windowframe magnet

