

ALMA MATER STUDIORUM Università di Bologna

Resistive magnets design studies

Marco Breschi¹, Rebecca Miceli¹, Pier Luigi Ribani¹ Fulvio Boattini², Luca Bottura²

¹Alma Mater Studiorum – Università di Bologna, Italy ²CERN, Geneva, Switzerland

Muon Collider Collaboration Annual Meeting CERN, Geneva, October 12th 2022

Outline

- Resistive dipole magnets specifications
- Analysis methodology
- Results of the three analyzed magnet configurations
 - Windowframe magnet
 - H-type magnet
 - 'Hourglass' magnet from the US study
- Comparison of the three configurations
- Summary and perspectives

Resistive dipole magnets main specifications

 The resistive dipole magnets to be designed for the Muon Collider accelerator are characterized by the following main specifications:

1) Magnetic field in the aperture about **1.8** T

2) Magnetic field homogeneity within 10×10^{-4} in the good field region (30 mm * 100 mm)

3) Ramps from $\Box B_{max}$ to $+ B_{max}$ in **1 ms.** The objective for the value of B_{max} is 2.0 T

4) Limit the magnet stored energy (crucial design specification to limit the supplied power)

5) Limit the total losses (iron + copper)

Analysed magnet configurations

2) H magnet

 In this preliminary study 3 main configurations are analyzed: Windowframe magnet, H magnet, Hourglass magnet (from the US study)

3) 'Hourglass' magnet

J. Scott Berg and Holger Witte, "Pulsed synchrotrons for very rapid acceleration", AIP Conference Proceedings 1777, 100002 (2016); https://doi.org/10.1063/1.496568.

Study methodology: DC optimization

- The analysis is performed both in DC and AC conditions, in the frame of a 2D electromagnetic software (FEMM).
- A first optimization is performed in DC conditions, aimed at improving the field homogeneity in the good field region. The **objective function** to be optimized is the following:

Field goodness =
$$\frac{1}{B_{des}} \sqrt{\frac{1}{A_{gap}} \iint_{A_{gap}} \{ [By(x,y) - Bdes]^2 + [Bx(x,y)]^2 \} dA_{gap}}$$

where B_{des} is the design value of the magnetic field in the center of the gap.

- The optimization is performed by using the MATLAB optimization toolbox and is based on the interior point method (function *fmincon*).
- The variables of the optimization are **geometric parameters**, while the current density is kept fixed
- Convergence is reached when the relative variation of all components of the vector of unknowns is less than 10⁻¹⁰. The typical number of iterations to reach convergence is 100.

Study methodology: AC analysis

• The design current profile consists of a ramp from $-B_{max}$ to $+B_{max}$ in 1 ms. It is foreseen that this current profile will be provided by the power supply through the superposition of sinusoidal waves.

- The study in AC conditions starts from the geometric parameters defined in the DC optimization. The AC study is
 performed in the frequency domain: the coil currents are assumed sinusoidal, with a frequency of 500 Hz.
- Two approximations are made with the AC study:

1) the linear ramp is approximated as a sinusoid

2) the AC stationary conditions are assumed, which differ from the pulse followed by a standby time.

Windowframe magnet: geometry

Parameters:

- 1. Curatio = 0.8
- 2. ygap = 0.03 [m]
- 3. xgap = 0.1 [m]
- 4. xgfr = xgap/2
 - 5. ygfr = ygap/2
 - 6. dcoil = 0.003 [m]

Optimized variables (M-22 steel):

- 1. lc1 = 35000 A
- 2. lc2 = 10500 A
- 3. Ic3 = 4500 A
- 4. ysh = 0.0012 [m]
- 5. xshup = 0.0167[m]
- 6. xshratio =

xshup/xshdown = 0.3

Windowframe magnet: results with Supermendur in AC

With Supermendur, having a high saturation field, a good agreement is found between the computed DC field (1.77 T) and AC field (1.76 T)

 The use of the Supermendur allows a reduction of the iron losses from 64 kW/m to 18 kW/m with respect to M-22 steel

> ALMA MATER STUDIORUM Università di Bologna

H magnet 3-coils configuration: geometry

 In order to reduce the current distribution non-uniformity, and the mutual induction coupling between different coils, a different configuration was analyzed.

Parameters:

- 1. xgap = 100 mm
- 2. ygap = 30 mm
- 3. d = 3 mm
- 4. $\alpha = 1.3$

5.
$$Jc = 12 A/mm^2$$

Optimized variables:

- 1. xfm
- 2. xfm1
- 3. yfm1
- 4. yfm2
- 5. xc10
- 6. xc1
- 7. yc1
- 8. xc2
- 9. yc2 (xc3 = xc2, yc3 = yc2)

H magnet 3-coils configuration: results in AC

-0.09

-0.1

x(m)

-0.13

-0.12

-0.11

-0.08 -0.07

ALMA MATER STUDI

- The current distribution is more uniform than in the windowframe magnet, which leads to lower losses in the copper
- A significant non-uniformity is still found in the central coil, which suggests its elimination

H magnet 2-coils configuration: geometry

H-Type magnet 2-coils configuration: results in AC

A more uniform current distribution is obtained than in the configuration with 3 coils

180

- The results reported in this plot correspond to a current density set to 12 A/mm² in the DC optimization
- Only the total transport current is kept fixed in the AC analysis

Hourglass magnet configuration: geometry

- In this analysis the same magnet dimensions adopted in the US Muon
 Collider design study have been considered
- Differently from the present configuration, the gap height is set to
 25 mm instead of 30 mm, while the gap length is set to 157 mm instead of 100 mm
- No further optimization is applied to this configuration, as it results from the US study; in this analysis the coils are not subdivided into separate current sheets

Hourglass magnet configuration: results in AC

- **Current density** and **magnetic flux density** in the gap calculated in a.c. regime with f = 500 Hz, with Supermendur in the iron yoke
- A very uniform current distribution is found, except for the edges of the two coils

Comparison of the three analyzed configurations

- The 'hourglass' magnet from the US study exhibits the lowest real power (losses) and low reactive power
- The windowframe magnet exhibits the lowest reactive power
- The H-magnets exhibit
 lower copper losses than
 the windowframe
 magnet

	Active power [kW/m]	Reactive power [MVar/m]	Gap energy [J/m]	Energy in air (no gap) [J/m]	Energy in coils [J/m]	Losses in iron [kW/m]
Windowframe magnet	1236	14.0	3697	668	1485	18
H magnet - 3 coils	356	16.3	3814	1305	552	26
H magnet - 2 coils	182	19.9	3875	3140	142	111
Hourglass magnet	149	15.7	3821	1165	7	122

Summary and perspectives

- A tool for the optimized analysis of resistive magnets for the Muon Collider accelerator has been developed
- The assumptions of this tool will be carefully checked through other computation methods not requiring the AC approximation
- Three different configurations have been analyzed, namely the windowframe magnet, the H type magnet and the 'hourglass' configuration resulting from the US design study
- The 'hourglass' configuration exhibits low real and reactive power, which indicates it already reached a very good level of optimization
- Further **optimization** will be applied to the newly proposed designs

ALMA MATER STUDIORUM Università di Bologna

Thank you for your kind attention !

Marco Breschi, Rebecca Miceli, Pier Luigi Ribani Fulvio Boattini, Luca Bottura

marco.breschi@unibo.it

www.unibo.it

Windowframe magnet: M-22 steel vs Supermendur

M-22 steel

Ic1max = 35.0 kA Vc1max = 789 V/m Fluxmax = 0.25 Wb/m Real Power = 1.35 MW/m Reactive Power = 13.7 MVar/m Cu losses = 110.6 kW/m

- Ic2max = 10.5 kA Vc2max = 759 V/m Fluxmax = 0.24 Wb/m Real Power = 0.33 MW/m Reactive Power = 3.96 MVAr/m Cu losses = 501.6 kW/m
- Ic3max = 4.5 kA **Fe loss = 64 kW/m** Vc3max = 680 V/m Fluxmax = 0.26 Wb/m Real Power = 0.057 MW/m Reactive Power = 1.53 MVAr/m Cu losses = 1068.8 kW/m

Supermendur

Ic1max = 29.8 [kA] Vc1max = 676 [V/m] Fluxmax = 0.22 [Wb/m] Real Power = 0.97 [MW/m] Reactive Power = 10.0 [MVar/m] Cu losses = 89.2 [kW/m] Ic2max = 8.9 [kA] Vc2max = 648 [V/m] Fluxmax = 0.21 [Wb/m] Real Power = 0.23 [MW/m] Reactive Power = 2.88 [MVAr/m] Cu losses = 371.8 [kW/m] Ic3max = 3.8 [kA] Fe loss = 18 [kW/m] Vc3max = 580 [V/m] Fluxmax = 0.22 [Wb/m] Real Power = 0.038 [MW/m] Reactive Power = 1.11 [MVAr/m] Cu losses = 757.3 [kW/m]

H-Type magnet 2-coils configuration: results in AC

Nominal current density = 12 MA/m²

Ic1max = 23.5 [kA] Vc1max = 1118 [V/m] Fluxmax = 0.356 [Wb/m] Real Power = 0.1006 [MW/m] Reactive Power = 13.134 [Mvar/m] Resistive loss = 45.104 [kW/m]

Ic2max = 23.5 [kA] Vc2max = 1118 [V/m] Fluxmax = 0.356 [Wb/m] Real Power = 0.1006 [MW/m] Reactive Power = 13.134 [MVAr/m] Resistive loss = 45.104 [kW/m] Fe loss = 111.009 [kW/m] field energy in the gap = 2.292 [kJ/m] field energy in iron = 40.6 [J/m] field energy in air-in = 1.838 [kJ/m] field energy in coil 1 [J/m] = 5.0 [J/m] field energy in coil 2 [J/m] = 5.0 [J/m]

Nominal current density = 10 MA/m²

Ic1max = 22.7 [kA] Vc1max = 1064 [V/m] Fluxmax = 0.339 [Wb/m] Real Power = 0.0904 [MW/m] Reactive Power = 12.107 [Mvar/m] Resistive loss = 42.714 [kW/m] Ic2max = 22.7 [kA] Vc2max = 1064 [V/m] Fluxmax = 0.339 [Wb/m] Real Power = 0.0904 [MW/m] Reactive Power = 12.107 [MVAr/m] Resistive loss = 42.714 [kW/m] Fe loss = 95.434 [kW/m] field energy in the gap = 2.153 [kJ/m] field energy in iron = 40.6 [J/m] field energy in air-in = 1.659 [kJ/m] field energy in coil 1 [J/m] = 4.7 [J/m] field energy in coil 2 [J/m] = 4.7 [J/m]

Comparison of the three analyzed configurations

- The 'hourglass' magnet from the US study exhibits the lowest real power
- Among the newly developed designs, the windowframe magnet exhibits the lowest value of reactive power
- Due to a more uniform current distribution, the H-magnets exhibit lower copper losses than the windowframe magnet

Windowframe magnet	Real power [kW/m]	Reactive power [MVar/m]	Gap energy [J/m]	Energy in air (no gap) [J/m]	Energy in coils [J/m]	Losses in iron [kW/m]
Coil1	966.0	10.0	3697	668	1485	18
Coil2	232.0	2.9				
Coil3	38.0	1.1				
Total	1236.0	14.0				
H magnet 3- coils						
Coil1	62.4	3.6	3814	1305	552	26
Coil2	146.6	6.4				
Coil3	146.6	6.4				
Total	355.6	16.3				
H magnet 2- coils						
Coil1	90.9	10.0	3875	3140	142	111
Coil2	90.9	10.0				
Total	181.8	19.9				
Hourglass magnet						
Coil1	74.5	7.9	3821	1165	7	122
Coil2	74.5	7.9				
Total	149.1	15.7				