

Ilaria Vai on behalf of the Physics and Detector working group

Muon Collider detector

Based on CLIC detector: arXiv:1202.5940

ILCSoft: http://ilcsoft.desy.de/portal

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- → 30x30 mm² cell size:
- 7.5 λ_I.

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- ♦ 22 X_0 + 1 $λ_1$.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:
 - double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 - 25x25 µm² pixel Si sensors.
- Inner Tracker:
 - 3 barrel layers and 7+7 endcap disks;
 - 50 μm x 1 mm macropixel Si sensors.
- Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 μm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding.

Ilaria Vai

1 MeV n_{eq} fluence/year

P. Sala et al

 \approx few 10¹⁵/cm²/y

1 Gy = 100 rad 1 Grad = 10 MGy

 $\approx 10^{-3} - 10^{-2}$ Grad/y

Normalization: 2 × 10¹² muons/bunch 200 days/year 100 kHz bunch crossing

Color scale: Grad/vear

Muon System Fast timing MPGD – Picosec

Technologies for the muon system

Detector	σ_t	$\sigma_{\scriptscriptstyle \chi}$	Rate capability
RPC (HPL o Glass)	1 ns (single-gap) < 100 ps (multi- gap)	~mm	~ 1 kHz/cm ²
Standard MPGD (GEM, Micromegas)	5-10 ns	\sim 100 μ m	> 100 kHz/cm ²

R&D Goal: develop a detector able to reach good performance on all the three items \rightarrow to be used at the muon collider as a

Dedicated Timing layer, to be combined with a muon tracking layer

Picosec detector

https://gdd.web.cern.ch/activities-picosec

New MPGD composed by:

- MgF₂ Cherenkov radiator (3-4 mm)
- Photocathode (10 nm), currently of CsI
- Standard Micromegas with reduced drift gap

→ Measured time resolution ~ 25 ps (Ne/C₂H₆/Cf₄ – 80/10/10)

Interesting because, as it is an MPGD, we aim at combining the improved time resolution with an excellent space resolution and rate capability (improvement w.r.t. RPC).

Beam Induced Background

BIB Energy distribution - Neutrons vs θ

Distributions obtaines from MARS+Geant4+v02-05-MC selecting the particles that arrive at the muon system.

The BIB in the muon system is mainly composed by neutrons and photons.

In the inner regions the flux is almost 3 order of magnitudes higher than in the out regions.

BIB Energy distribution - Photons vs θ

At
$$\sqrt{s} = 1.5 \, TeV$$
:

- Neutrons: energies up to 2.5 GeV
- Photons: energies up to 200
 MeV

Standalone simulations - 1

Geant4 standalone simulation (Geant4.10.06 p02) to study the response of the detectors to BIB @ 1.5 TeV.

- Detector sensitivity to BIB simulated for:
 - Double-gap Glass RPC
 - Double-gap HPL RPC
 - Triple-GEM
 - Picosec

Picosec sensitivity lower than RPC one, because MPGDs have lower material budget.

Sta

Minternational UON Collider

Standalone simulations - 2

Hit Rate = Sensitivity × **BIB flux**

- → Picosec has lower expected hit rate than RPC (because sensitivity is lower)
- → Expected Hit Rate for RPC already at the limits for current technology

Nentron Hit Bate (Hz/cm²) Nentron Hit Bate (Hz/cm²) RPC RPC GRPC PicoSec

Muon Collider 1.5 TeV - Neutron Hit Rate vs θ

MInternational UON Collider Collaboration

Participation in RD51 testbeams

Slots for Picosecs 53 57.5 111 116 118 61.7 19 81.9 All values in cm MCP distances between GEM1 and the front of the window

Micro Channel Plate PMT (MCP) for time reference (σ_t≈5ps)

→ 1 MCP from Pavia group (8ps, but not used at 100% HV value)

In 2022, we participated in 3 RD51 testbeams with the following measurement plans:

1. April

Measure the time response of MCP for the next testbeams

2. May

- Test new photocathode (B4C) thin mesh/gap resistive MM
- Test new custom preamplifier
- 10x10 uniformity SAMPIC digitizer readout (64ch)

3. July

- Test new photocathode (B4C different thickness, DLC without Chromium)
- SAMPIC digitizer 256ch full 10x10 readout
- Picosec for the electromagnetic calorimeter

Procurement of new prototypes

10x10 detector already ordered and production ongoing

Meanwhile, we assembled a single-channel detector with:

- micromegas from RD51
- Radiator and mechanics from spare material

- Radiators tested @ CERN dedicated lab (see transmissivity plot)
- Chromium photocathode (calibration configuration)

Plans for single-channel test

New radiators

- MgF2 is the most UV trasparent material but:
 - High cost, Fragile
 - Non perfectly stable during material deposition (imperfection on half of the samples)
- Investigate:
 - CaF2, BaF2, sapphire
 - Quartz → the most promising for large areas, low cost and robustness (lower transparency)

New photocathodes

- CsI has the best performance in terms of time resolution, resistive photocathodes are more promising for the long term and robustness
 - B4C and DLC
 - (Graphene and nanodiamonds trials by RD51)

New Gases

- Baseline Ne/C2H6/CF4 80/10/10 Flammable, High GWP, High cost!
 - Removal of CF4
 - Substitution of C2H6 (ethane) with C4H10 (isobutane) or even better CO2
 - Look for a Neon substitute (very difficult...)

Each of these comes with a price to pay in terms of time resolution and/or stability

Next steps

- Participate in the October test beam (19 Oct-31 Oct) with single-channel:
 - MgF2 and Quartz radiator comparison (different WP)
 - CsI, DLC and B4C, Chromium **photocathodes** comparison (different WP)
 - Cividec and RF amplifier comparison (different WP)
 - Timing resolution at different **sampling rates** (only with scope 1-40 Gs/s)
 - Help to develop DAQ for **SAMPIC** (RD51 10x10)
 - Only premixed bottles during testbeam → no test on gas
- From November in Pavia, single-channel gas tests:
 - Test w/o CF4, change of quencher

- Time uniformity response test with ultrafast laser
- CsI and DLC test on large areas
- Preparation for next testbeam

Full simulation in muon collider framework ongoing to assess the muon collider performance requirements (see Chiara Aimè talk)

