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Outline

* What 1s a neutrino factory?

* Why should you care about neutrinos?
* Neutrino mass 1s BSM
* Window to theory of flavor
* New interactions
* Fermion portal aka sterile neutrinos

 Summary & Outlook

TLDR - a neutrino factory 1s the mother of all
neutrino beams.
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Traditional beam

Neutrino beam from m-decay
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 primary v, flux constrained to 5-15%

* 1, component known to about 20%

 anti-neutrino beam systematically different —
large wrong sign contamination

* 1, difficult to distinguish from NC events
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Neutrino factory beam

Oscillation Detection
CC —

H

This requires a detector which can distinguish g
from p~ = magnetic field of around 1T

* beam known to %-level or better
* muon detection very clean
* multitude of channels available, including v
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Neutrino factories

Neutrino Beam Neutrino Beam
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nuSTORM & ENUBET \ Sejy . detector

protons — (K', ) —w= jidecays  ——s=w v, = neutrino ]
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Neutrinos are massive — so what?

Neutrinos in the Standard Model (SM) are strictly
massless < neutrino oscillation 1s BSM physics!

... yes, this 1s not SUSY, large extra dimensions or
anyone’s favorite BSM model, but it IS the only

laboratory-based proof for the incompleteness of the
SM.

Alas, 1t 1s 1indirect evidence: no energy scale, no
symmetry, no new interaction, no new particles are
seen 1n the laboratory.
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Neutrinos in a nutshell

m, < 1eV, could be Dirac or Majorana

Quarks Neutrinos

1 0.2 0.005 0.8 0.5 0.15
Uekml=1 02 1 004 | |U|=] 04 06 0.7

0.006 0.04 1 0.4 0.6 0.7

Majorana mass term allows for things like seesaw and
could be simple explanation why mixings so different.
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CP violation
There are only very few parameters in the ¥SM which
can violate CP

 CKM phase — measured to be v ~ 70°
» 0 of the QCD vacuum — measured to be < 10~

* Dirac phase of neutrino mixing
* Possibly: 2 Majorana phases of neutrinos
At the same time we know that the CKM phase 1s not

responsible for the Baryon Asymmetry of the
Universe. . .
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Unitarity triangles

We currently have no way to directly measure any of
sides containing v;.
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What did we learn from that?

Our expectations where to find BSM physics are
driven by models — but we should not confuse the
number of models with the likelihood for discovery.

® CKM describes all flavor effects
®* SM baryogenesis difficult
® New Physics at a TeV unlikely

and a vast number of parameter and model space
excluded.
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Non-standard interactions

NSI are the workhorse for BSM physics 1n the

neutrino sector. They can be parameterized by terms
like this

Lnst = _2\/§Gf€£];(ﬂa7pyﬁ)(f7ppf) :

Wolfenstein, 1978

NB — difficult to build UV-complete models with
large effects, e.g Farzan, 2015

Systematic matching to SM EFT also possible,
resulting 1n relationships between the naive €’s.
Falkowski, Gonzaléz-Alonso, Tabrizi, 2019
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Impact on three flavors
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In this example, CP conserving new physics fakes CP

violation 1n oscillation!
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NSI 2020

2020 NOvA and T2K
data 1s slight tension

CP violating NSI could
be the explanation.

0
0.0 0.1

Gehrlein, Denton, Pestes, 2020

Every time T2HK & DUNE find different values for
oscillation parameters the same game will be played
and we’ll never know 1f 1t’s real or just systematics.
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DUNE & NSI

NC NSI discovery reach (30 C.L..)

sin“26,3 = 0.094
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Kopp for DUNE, 2013
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Neutrino factory & NSI
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Flavor models

Simplest un-model — anarchy Murayama, Naba, DeGouvea
2 4 2
predicts flat distribution in 0¢p

Simplest model — Tri-bimaximal mixing Harrison,
Perkins, Scott
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obviously corrections are needed — predictivity?
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Sum rules

61o=35°+613C0S0 current best fit values and errors

01o=32°+6013C0SH for 044, 613 and 63 taken from
Fogli et al. 2012
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Is 5° feasible?
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The way forward

Exps. Running 50% in neutrino mode
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Nuclear effects — example

Perfect Rec., Cal.

------- 80% Emiss  x*/dof=0.4/52

—— 50% Enigs  x°/dof=2.6/52

------ 20% Epmiss  x°/dof=7.5/52

10 contours (2 d.o.f.)

Wide Band, L=1300 km

Ankowski et al., 2015

In elastic scattering
a certain number of
neutrons 1s made

Neutrons will be
largely 1nvisible even
in a liquid argon TPC

= mIssing energy
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Theory and cross sections

Theory 1s cheap, but multi-nucleon systems and their
dynamic response are a hard problem and there 1s not
a huge number of people working on this. ..

Without being anchored by
data, any result will be based
on assumptions and uncon-
trolled approximations.

Requires a novel precision, high-luminosity neutrino
source = nuSTORM & ENUBET
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The big question
Things the Standard Model does NOT explain

e Neutrino mass

* Dark matter

e Baryon asymmetry

e Dark energy

e Gravity
50 years of 1deas, most have been retired by flavor
physics and LHC results
Is there anything within our means we can find?

NB: None of the neutrino properties & discoveries
was anticipated by theory.
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Outlook

* Neutrino physics has a lot of room for surprises,

so 1t makes sense to push sensitivities even after
DUNE/T2HK.

 Persistent hints for new degrees of freedom
around 1-10eV.
e A neutrino factory would be a “must fund” if:

* the eV-scale anomalies are confirmed,

« T2HK and DUNE find different oscillation
parameters, which is basically guaranteed

 arobust theory of flavor emerges.

A neutrino factory has strong synergies with muon
collider R&D and could help to motivate the
necessary investment.
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