The Advanced Muon Facility at Fermilab: Physics and Relationship to the Muon Collider

R. Bernstein, FNAL ENIGMA Collaboration

> IMCC Meeting October 2022

Charged Lepton Flavor Violation

- Transitions among $\mu \leftrightarrow e \leftrightarrow \tau$ without neutrinos
 - cannot be weak interaction: non-SM process
- Directly linked to questions of flavor and generations
 - we observe mixing in quarks and neutral leptons: why not charged?
- Muon CLFV has been under study since the discovery of the muon; taus are also important

Contributions to Muon CLFV

Compositeness

Λ_c ~ 3000 TeV

Supersymmetry

rate ~ 10⁻¹⁵

Heavy Neutrinos

Second Higgs Doublet

 $|U_{\mu N}U_{e N}|^2 \sim 8 \times 10^{-13}$

Heavy Z'

also see Flavour physics of leptons and dipole moments, <u>arXiv:0801.1826</u>; Marciano, Mori, and Roney, Ann. Rev. Nucl. Sci. 58, doi:<u>10.1146/annurev.nucl.58.110707.171126</u>;

R. Bernstein, FNAL

CLFV Muon Processes

- oldest studied, most powerful limits, and the best experiment so far: MEG at PSI
- $\mu N \rightarrow eN$

• $\mu \rightarrow e\gamma$

 muon to electron conversion: muon converts in field of nucleus, leaving nucleus unchanged

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$$

- two experiments upcoming at FNAL and JPARC
- $\mu \rightarrow eee$

ambitious and unique, excellent partner to other two (at PSI)
R. Bernstein, FNAL
4
IMCC Collaboration Mtg Oct 2022

Mass Scales of Muon CLFV Searches

operator coefficients =1, from Physics Briefing Book, 1910.11775

R. Bernstein, FNAL

5

Neutrino Oscillations and Muon CLFV

- ν's have mass! individual lepton numbers are not conserved
- Therefore Lepton Flavor Violation occurs in Charged Leptons as well

R. Bernstein, FNAL

Toy Lagrangian

Contributes to $\mu \rightarrow e\gamma$

(just imagine the photon is real)

Does not produce $\mu \rightarrow e\gamma$

A. DeGouvêa and P. Vogel, <u>1303.4097v2</u> [hep-ph] for EFT treatment see S. Davidson and B. Echenard, <u>2010.00317</u> [hep-ph] R. Bernstein, FNAL 8 IMCC Collaboration Mtg Oct 2022

"DeGouvea Plot: 2013"

R. Bernstein, FNAL

9

EFT: Beyond Λ and κ

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

- Write EFT Lagrangian:
 - Dipole $(\mu \rightarrow e\gamma)$ + Contact Scalar $(\mu \rightarrow 3e)_{L}$ + Contact Vector $(\mu \rightarrow 3e)_{R}$ + Contact $\mu N \rightarrow eN$ (light nuclei) + Contact $\mu N \rightarrow eN$ (heavy nuclei)
- Parameterize coefficient space with spherical coordinates: *lets you express constraints on all three processes simultaneously*
- Will show you "slices" in the multi-dimensional space

R. Bernstein, FNAL 10 IMCC Co

Complementarity

S. Davidson and B. Echenard, 2010.00317 [hep-ph]

• All three channels have strengths; we need the combination

• $\mu \to e\gamma$ and $\mu \to 3e$ at $\mathcal{O}(10^{-15})$ are a next-gen target

R. Bernstein, FNAL

Decay Experiments

•
$$\mu^+ \rightarrow e^+ \gamma$$
 and $\mu^+ \rightarrow e^+ e^+ e^-$

- these bring low energy (~ 30 MeV) μ^+ to rest in material and observe the decay (surface muon)
- in $\mu^+ \rightarrow e^+ \gamma$, accidentals scaling as I^2 are the limit; accidentals come from multiple muon decays and resolution limits
 - since accidentals drive the background, we want as continuous a beam as possible
- in $\mu^+ \to e^+ e^+ e^-$, additional bkg from radiative muon decay, $\mu^+ \to e^+ e^+ e^- \nu_e \bar{\nu}_\mu$ with small E_ν

R. Bernstein, FNAL

$\mu \rightarrow e\gamma$ Limits

- $\mu^+ \rightarrow e^+ \gamma$ as in MEG, but convert the photon for improved resolution (have a vertex from tracks)
 - lowers statistics by ~x100 but improves background rejection

New Ideas in Decay Experiments

- $\mu \rightarrow e\gamma$: back-to-back electron and photon
 - $B \propto \Gamma_{\mu}^2 \cdot \delta E_e \cdot (\delta E_{\gamma}^2) \cdot \delta T_{e\gamma} \cdot (\delta \theta_{e\gamma}^2)$
 - converting $\gamma \rightarrow e^+e^-$ improves resolutions but there are limits: converters imply straggling in *dE/dx*, etc.
 - active target for vertex? fundamentally new approach?

New Ideas in Decay Experiments • $\mu \rightarrow 3e$:

2204.00001

• $\mu \to 3 e \bar{\nu}_e \nu_\mu$ is main background

- target sensitivity of 10^{-16} at HiMB, 2e9 μ /s
- with more rate, harder cuts? new detector ideas?

R. Bernstein, FNAL

Capture Experiment

- $\mu^- N \to e^- N$ ($N = {}^{27}AI_{13}$ for Mu2e)
 - brings a muon near an atomic nucleus where it falls into a muonic 1s state: monoenergetic electron just below m_{μ}
 - for several generations of experiments, including Mu2e/ COMET, the beam design was driven by radiative pion capture (RPC):
 - $\pi^- N \to \gamma N', \ \gamma \to e^+ e^-$ at the signal energy
 - Mu2e/COMET use a *pulsed* beam and use the 26 ns pion lifetime vs 2.2 μ s muon lifetime to "wait out" RPC

R. Bernstein, FNAL

Mu₂e Muon Beam: Three Solenoids and Gradient

- Target protons at 8 GeV inside superconducting solenoid
- Capture muons and guide through S-shaped region to Al stopping target
- Gradient fields used to collect and transport muons 17 IMCC Collaboration Mtg Oct 2022 R. Bernstein, FNAL

Muon K.E ~ 7 MeV muons range out by dE/dx in Aluminum

 μ,π,e

A

Mu2e/COMET timing scheme

- Complicated plot, but similar for Mu2e/COMET
 - pulse at beginning

Mu2e is $\mu^{-}Al \rightarrow e^{-}Al$

- wait for pions to decay
- open a signal window

R. Bernstein, FNAL

18

Mu2e/COMET timing scheme

- Complicated plot, but for both Mu2e/COMET
 - pulse at beginning
 - wait for pions to decay
 - open a signal window

Mu2e is $\mu^{-}A1 \rightarrow e^{-}A1$

864 ns μ^- Al atom lifetime well after beam flash

R. Bernstein, FNAL

19

Conversion at Higher Atomic Number

- Model Discrimination and Possibly Larger Signal at high Z
- if Mu2e sees a signal, this is the obvious next step
- if not, we should try for another x10-100 better constraints

adapted from V. Cirigliano, B. Grinstein, G. Isidori, M. Wise Nucl. Phys. B728:121-134,2005

R. Bernstein, FNAL

Limitation of Mu2e Method

- A beam pulse is ~250 ns FWHM
- You can't do an experiment inside the debris from the beam pulse
- And therefore you can't go to high Z: Ti about limit

New Facility: AMF hep-ex 2203.08278

- The "Advanced Muon Facility" would use PIP-II to enable
 - CLFV in all three muon modes: world-leading facility
 - two new small rings for $\mu N \to e N$ at high Z and additional x100 in rate
 - with a possible DM experiment
 - x100-1000 more beam for $\mu \to e \gamma$ and $\mu \to 3 e$ than are possible at PSI
 - Possible muonium-antimuonium and muon EDM

R. Bernstein, FNAL

22

Conversion Experiment

- Like Mu2e, target beam inside a solenoid, but at 100 kW 1MW vs. Mu2e's 8 kW
 - Mu2e-II at 100 kW, but not high Z
- Rebunch PIP-II beam in a "compressor ring"
- next, bring to proton target

the FFA for conversion from Japan: https://indico.fnal.gov/event/46669/contributions/203147/ attachments/138314/173082/ PRISM_CLFV_10122020_Pasternak.pdf

- Transfer to a fixed-field alternating (FFA) gradient ring
 - phase rotates to slow higher momentum muons, accelerate lower momentum muons.
 - pion contamination from RPC greatly reduced while muons are circulating in ring
 - Extract pure, cold muon beam to detector

R. Bernstein, FNAL

Beam for Conversion

- Compressor Ring:
 - 500 kW achievable;
 - 12 ns kickers are the limit for 1 MW

Description	Protons-Per-Pulse	Pulse Spacing (ns)	Repetition Rate (Hz)
AMF	7.8×10^{13}	24	100
Dark Matter	6.2×10^{14}	196	100

R. Bernstein, FNAL

Production Solenoid

- Mu2e at 8 kW requires a complicated heat and radiation shield to keep superconductor from quenching; COMET (Japanese version) proposes 56 kW
- Mu2e-II Conceptual designs exist for 100 kW
 - "moving mass" target and thicker shield
- AMF would provide world-class physics at high-Z; 100 kW is just the first step
- Various ideas for 1MW have been promoted
 - ν targets for DUNE get to 1MW...why so hard?
 - not inside a superconductor: MuCol is working on this

R. Bernstein, FNAL25IMCC Collaboration Mtg Oct 2022

• PRISM (Phase Rotated Intense Source of Muons)

(arXiv:1310.0804 [physics.acc-ph])

• EMMA, MuCol studies at higher momenta

https://indico.psi.ch/event/7313

Beam for Decay Experiments

- Two Options:
 - a conventional stopped muon beam at 1MW based on PSI but a new, dedicated facility for CLFV.
 - use same production system as for capture experiments, but flip sign of selected muons; rotate central collimator and get μ^- (charged particles traveling around a curved solenoidal field see effective centrifugal force)
 - will require detailed MCs to choose

R. Bernstein, FNAL

Other ideas: Beam for Decay Experiments

- Reversing sign of solenoids not easy; initial proton beam doesn't reverse charge and therefore follows a different trajectory inside solenoid, misses target, and then other "bad things". But we could take beam out other end of solenoid...
- But is it possible to select muon momentum by "waiting?" Slowest, lowest energy muons are last and those are best.
 - enough beam to make this work, preliminary simulations indicate could work
- Active muon channel: *cooling ideas used in MuCol designs*
- Many ideas and will take a lot of work to sort through. Surface muons are conceptually simplest but we should be able to do better

Existing Attempts on Targeting

https://aip.scitation.org/doi/pdf/10.1063/1.3399332

- Problem with a long history and a lot of thought:
 - liquid Hg in 1990's, moving away from that
 - MERIT experiment
- Tues AM session on Targeting:
 - Mori, Ximenes, Densham, Carrelli talks at this meeting

Calviani: https://indico.cern.ch/event/1016248/contributions/4282384/attachments/2215324/3752155/MCa_MUC_Targetry_25Mar2021_v1.pdf

R. Bernstein, FNAL

Beam Technical Challenges

- Things that are very hard that we know how to do:
 - stopped muon beam at 1MW
 - compressor ring
 - FFA

- Things that are very hard that we don't know how to do
 - 1MW target inside a solenoid

Detector Technical Challenges

- $\mu^- N \rightarrow e^- N$
 - halving momentum resolution on signal e^-
 - not just making Mu2e straws thinner
 - rethink detector design
 - dominant background (we think) will be cosmic ray production of electrons in signal region
 - a CRV x100-x1000 better than Mu2e

One Concept for $\mu^- N \rightarrow e^- N$

 Spiral Detector Solenoid greatly reduces rate seen by detector, opens up new detector designs (from PRISM/PRIME)

R. Bernstein, FNAL

Overlaps

- Targeting inside a solenoid at up to 1MW
 - Does it make sense to use MuCol ideas about resistive/ superconducting solenoids for this program?
- Is an FFA the right answer, or are there cooling ideas to provide a better muon beam?
 - are there other ideas? PRISM is a large emittance beam in an FFA, is that the best option?
 - FFA solves a lot of problems: serves as a storage ring to let π 's decay and we never see the beam flash
- Can this program either be a demonstrator for or a customer of a muon collider facility?

R. Bernstein, FNAL

33

Summary

- Muon-based Charged Lepton Flavor Violation provides powerful searches and constraints for BSM physics
- A new facility at FNAL could provide all three muon channels, $\mu \rightarrow e\gamma, \mu \rightarrow 3e$, and $\mu N \rightarrow eN$ with orders of magnitude more data and open new possibilities in $\mu N \rightarrow eN$ at high Z
 - plus a dark matter experiment and other muon measurements not discussed.
 - technical challenges directly related to muon collider R&D:
 - solenoid, targeting, and FFA are common
 - We hope for P5 to recommend design of the program with submission to next P5

R. Bernstein, FNAL