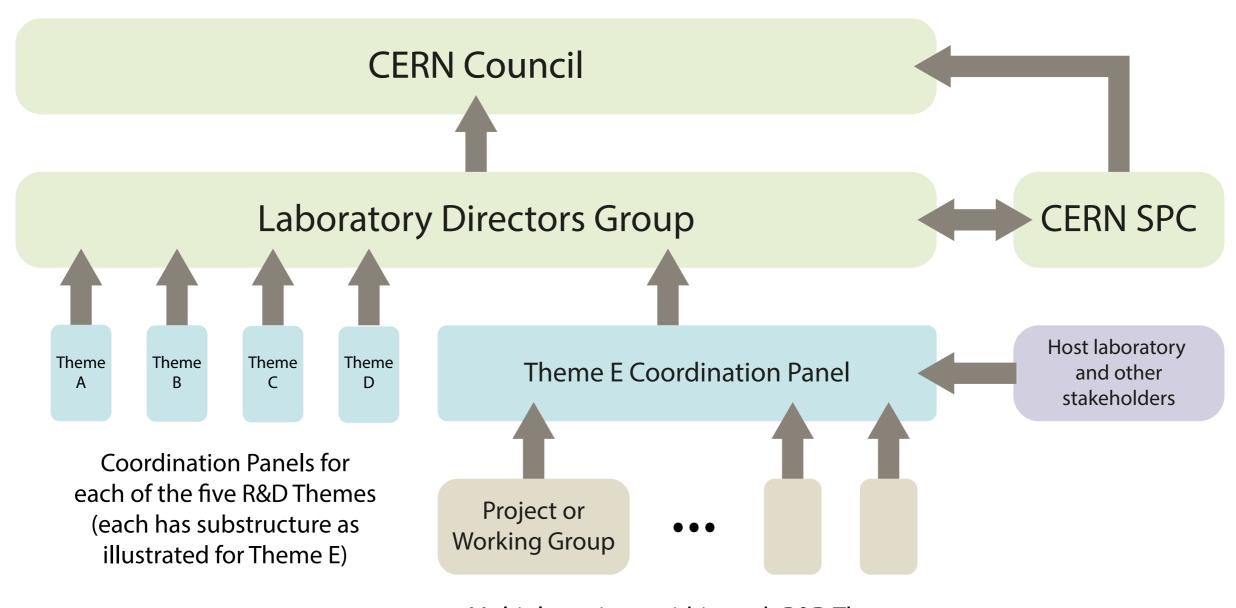
Accelerator R&D Roadmap

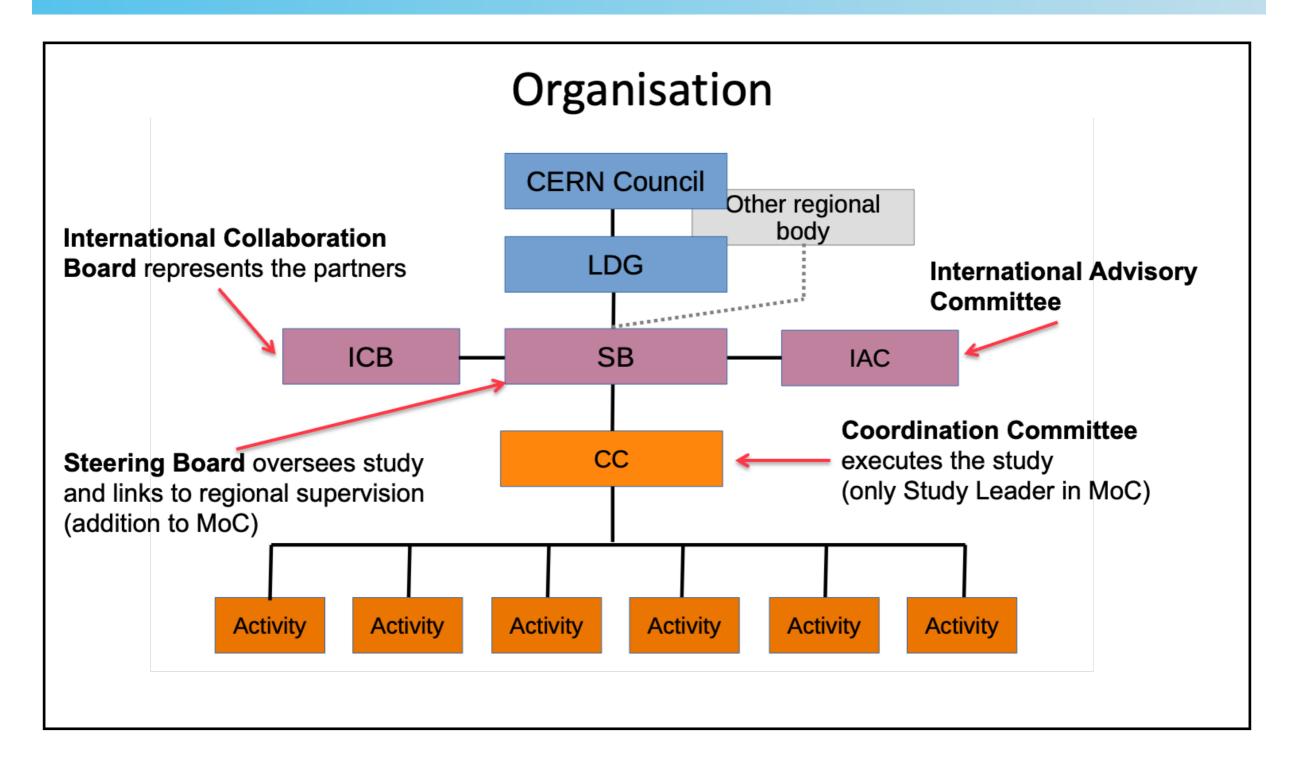
- LDG working via mandate conferred by Council, March 2022
- Where are we?
 - Roadmap defined, received by Council, published at start of 2022
 - Definition and population of coordination structure for the coming years
 - Discussions with supporting funding agencies and labs
 - First formal review of progress / status in December 2022
- LDG view of the goals for the coming years
 - Provide evidenced inputs to the next update of the European Strategy, supporting decision-making around future collider projects
 - ▶ Performance expectations, technical options, cost analysis, plausible schedule, site options
 - What intermediate demonstrators should be built, and what science can they deliver?
 - ▶ Build and sustain coherent R&D community, working with particle physics community
 - Ensure focus on the goals of the European Strategy, while profiting from links to the wider 'accelerator development' world
 - Make the case for adequate support and engagement by European funding agencies
 - New: develop and document the 'sustainability case' for new machines
- We note that the IMCC is dealing with more than just the machine



General Roadmap Recommendations

- 1. The Roadmap is the consensus view of the community (but many detailed planning decisions are yet to come)
- 2. Governance structures should be put in place, spanning the R&D programmes; CERN Council is the ultimate arbiter
- 3. Maintain a broad front: at least the minimal programmes in each area
- 4. Retain the capability for blue skies R&D
- 5. Continuity of funding is more important than maximal funding; investments must be supported in the long term
- 6. Sustainability is now a driving factor; plan in light of this
- 7. Early science output (and impact) from the R&D is desirable; plan in light of this
- 8. We need to work with industry closely, and in ways that they can accommodate
- 9. Close and organised cooperation between major labs internationally is needed to facilitate the programme
- 10. Trained people are the lifeblood and future of the field ensure the supply

Coordination Structure



Multiple projects within each R&D Theme

- Proposed coordination structure for implementation phase
 - Intended be 'lightweight' and cause minimal disruption / delay to existing R&D projects
 - Also needs provide a coherent route for a community-driven planning in 'ramping-up' areas

Muons Area Coordination

Coordination panel maps directly onto IMCC Steering Board

Coordination Panel Terms of Reference

- Oversee the development of a detailed execution plan for each R&D
 Theme, and coordinate the necessary work
- Have representation from all stakeholders, including (as appropriate)
 participating laboratories, institutes, and national communities
- Include representation from international partners, ensuring that a uniform picture for both European and international oversight bodies
- Act as a decision-making and prioritisation body within the approved scope of each R&D Theme, based on a consensus of stakeholders
- Where changes of objectives or scope, or prioritisation between objectives, are needed, submit recommendations and requests for comment to the LDG
- Ensure that decisions are made on a sound technical basis, drawing on the expertise of the collaborating projects and institutions, and setting up any subsidiary technical working groups that may be needed

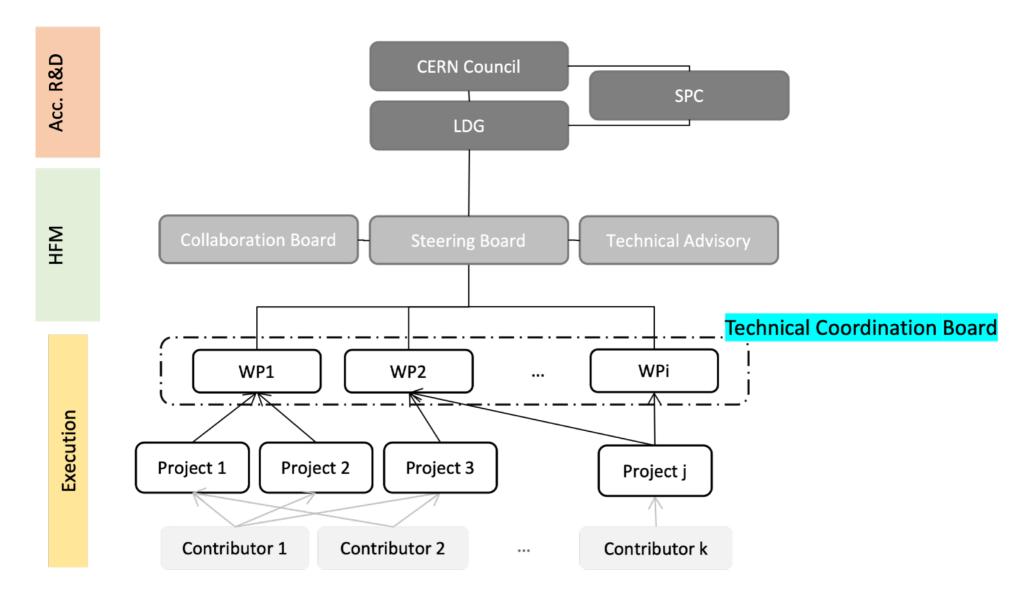
Panel Leadership Tasks

- Make initial contact with all projects, laboratories, institutes, and funding agencies with an interest in contributing to or supporting the R&D Theme
- Convene the Panel, where necessary, by calling for representatives from stakeholders, and hold regular meetings thereafter
- Organise, by consensus, an appropriate long-term structure for work within the R&D
 Theme
- Maintain ongoing contact with all stakeholders, including those with a future interest in the programme, working to define and negotiate technical and financial contributions
- Develop a detailed plan for the R&D programme, commensurate with the top-level priorities expressed in the R&D Roadmap and the available resource profile, drawing upon the expertise and capabilities of all participants
- Monitor progress against a clearly specified set of milestones, and track the usage of resources
- Act as link persons to LDG for reporting on plans and progress, including provision of progress reports at intervals agreed with LDG, and including a final report as input to the next European Strategy update
- Provide visible leadership, organisation and advocacy for the ongoing work of the Panel

Coordination Panel Leadership

HFM

- Mike Lamont (CERN)
- Pierre Vedrine (IRFU)
- RF
 - Giovanni Bisoffi (INFN Padova)
 - Deputy TBD
- LPA
 - Wim Leemans (DESY)
 - Rajeev Pattahill (RAL)


Muons

- Steinar Stapnes (CERN)
- Daniel Schulte (CERN)
- ERL
 - Jorgen D'Hondt (VUB)
 - Max Klein (Liverpool)

- Nominations received from laboratories and funding agencies
 - Important to identify strong organisational and technical representation,
 with national balance
 - In the cases where a formal collaboration exists, the names are drawn from the elected leadership

HFM

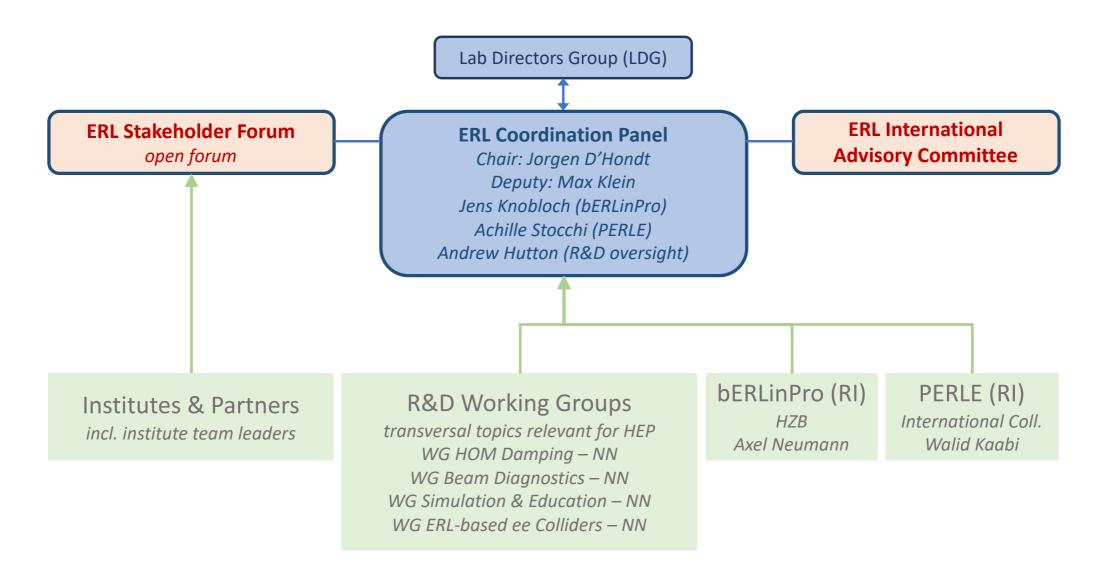
Aims

- Common understanding of the key technical challenges outlined in the HFM part of the Roadmap, wherein the requisite measures to address them are organized into work packages.
- Vibrant communities tackling these challenges in collaborative and competitive ways, producing timely, pragmatic, and innovative solutions.
- Technical coordination that ensures that developments find their way into demonstrator magnets.

RF

						NR S		2							, u		# #		
Task	Begin	End	Description	MCHF	FTE.y	_		ı r	1				•	I				•	_
RF.SRF.BKNb	2022	2026	Superconducting RF: bulk Nb	4	75	0.25	5	0.75	17.5	2	32.5		5		5	0.5	5	0.5	5
RF.SRF.FE	2022	2026	Superconducting RF: field emission	4	40	0.5	5	1	5	1.5	20			0.5	5	0.5	5		
RF.SRF.ThF	2022	2026	Superconducting RF: thin film	15	100??	11	35	2	15	1	15						5	1	10
RF.SRF.INF	2022	2026	Superconducting RF: infrastructure	5	15	2	7.5	1	2	2	1.5	0.5	1				1.5	0.5	1.5
RF.SRF.FPC	2022	2026	Superconducting RF: power couplers	4	16	1.5	5	1	5	1	5					0.5	1		
RF.NC.GEN	2022	2026	Normal conducting RF: general NC studies	0	27		17								6.5		2.5		1
RF.NC.MAN	2022	2026	Normal conducting RF: NC manufacturing techniques	2.5	30	2	20							0.5	8		1		1
RF.NC.HF	2022	2026	Normal conducting RF: mm wave & high frequency	0	5						1								4
RF.HP.HE	2022	2026	High-power RF: high-efficiency klystron & solid state	5.5	20	3.5	12.5		3					2	0.5				2
RF.HP.HF	2022	2026	High-power RF: mm-wave & gyro devices	0	5														5
RF.HP.TUN	2022	2026	High-power RF: reduced RF power needs tuners	0.4	6	0.4	2.8												3.2
RF.HP.AI	2022	2026	Al and machine learning	0.6	26					0.3	7.5						2.5	0.1	16
RF.TS.NCRF	2022	2026	NC RF test stands	5.3	40	2	15							2.5	15		5	0.75	5
RF.TS.MAT	2022	2026	Test stand: new materials	0.7	16	0.25	10					0.045	4						2
RF.TS.BEAM	2022	2026	Test stand: cavities in strong magentic fields (aspirational)	3	20			3	10									0.3	8
RF.TS.SRF	2022	2026	Test stand: SRF Horizontal cryostat	0.9	10														

Specific challenges in RF


- Community is large and well-funded, but dispersed and not coordinated
- Technology is cross-cutting and applies to very wide range of future projects
 - First applications of 'new technologies' not likely to be in particle physics
 - Strong overlap with ERL and muons areas
- Many (expensive) parallel developments in different labs
- Roadmap well less specific and 'planning oriented' than other areas

Discussions now regaining momentum quickly

- Concrete discussions on resources and cooperation beginning
- 'Dual role' panel being put in pace, combining technical leadership and national representation

ERL

- Clear shortfall in funding compared to roadmap ambition
 - Coordination panel is active in discussions with FAs
 - The prominent and importance of this area can only grow with time due to energy costs
 - However, first applications may be on boundary of particle / nuclear physics
 - ▶ Discussions needed on how to interact with the NuPECC long-range planning process

LPA

- Clear that a 'from scratch' organisation is required
 - A lot of activity ongoing in this area (and well funded)
 - Meaning: relevant labs and experts are already working on both 'fundamentals' but increasingly towards short-term applications in other fields
 - Key topics relevant to future colliders are not covered
 - Positron acceleration; staging; energy efficiency; machine simulation and design
- Panel now exists, including key people not previously engaged
 - ▶ The task is to turn the bold ambition expressed in the roadmap into a realistic plan
 - ▶ For some sub-areas no obvious funding lines exist but FAs ready to discuss
- Goals for the coming months
 - Meeting of work package leaders November 2022
 - Prioritisation of activities and deliverables November 2022
 - Discussions with funding bodies December 2022
 - Progress report and funding discussions at LDG December 2022
 - Forming the collaboration board February 2023
 - Community coordination meeting and progress update at ALEGRO meeting March 2023

Funding Agency View

- Informal discussions with seven funding agencies so far
 - Gain a first impression of interests, commitments, plans
 - Understand requirements for governance structure and reporting

Common themes

- Pressure on budgets from existing projects R&D may need to ramp up slowly
- Clear need to tie Roadmap R&D into broader programme of applied accelerator development (and e.g. fusion)
- Full recognition of careers pipeline / training issues
- Concern as to the feasibility of beyond-next-generation machines
 - Including: energy costs and sustainability
- ▶ In some cases: lack of transparency on funding, motivation and outcomes of R&D

Arguments for proceeding with a large-scale R&D programme

- Cost and sustainability concerns must be addressed via study / new ideas
- Pressure on resources increases need for explicit coordination / cooperation
- Robust and visible organisational structure will provide transparency, offer opportunities for collaboration outside our field

Next Steps

Coordination panel tasks

- ▶ Identify all possible (current and future) stakeholders, discuss resources ✓
- lacktriangle Inaugurate suitable coordination structures lacktriangle
- lacktriangle Define the concrete research plan for the coming years lacktriangle
 - ▶ Establishing realistic goals and expectations for next strategy update
- Progress discussions between panels on overlaps / common interests

First iteration of 'annual review cycle'

- ▶ LDG will review planning / execution in early December
- Report to SPC and Council at the open session on strategy, December

Issues still to be resolved

- The composition and inaugural meeting of the RRB
 - ▶ Ideally in common with the Detector R&D to present a coherent view of activities
- How to ensure long-term balance of funding with priorities and ambition

LDG observes that rapid progress is being made in the IMCC

- Seems to be on track to deliver against the roadmap goals, though resources and engagement will need continue to ramp up
- Watching with interest the discussions and actions in the US and elsewhere
- Looking forward to presentation of a firm and realistic R&D plan in December

