

MInternational UON Collider Collaboration

Muon Collider

D. Schulte for the International Muon Collider Collaboration

IMCC meeting October 2022

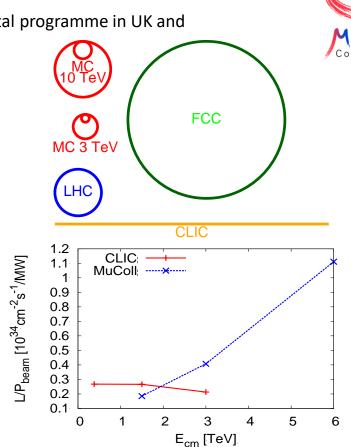
Motivation and Goal

Previous studies in US (now very strong interest again), experimental programme in UK and alternatives studies by INFN

New strong interest:

- Focus on high energy with high luminosity
 - 10+ TeV, the reason for a muon collider
 - potential initial energy stage (e.g. 3 TeV)
- Technology and design advances

Combines precision physics and discovery reach

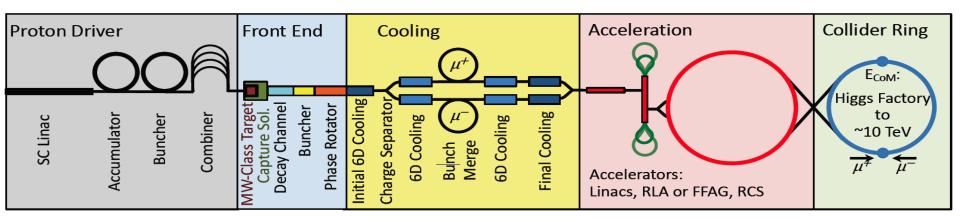

Increasing luminosity to power efficiency make it likely that we can meet **increasing luminosity demands**

Compactness makes it likely to be cost effective

No insurmountable obstacle identified

But challenging technologies and design require R&D

D. Schulte



Collider Concept

UON Collider

Collaboration

Fully driven by muon lifetime, otherwise would be easy

Short, intense proton bunch			Ionisatio muon in	on cooling of matter	Accelera energy	tion to collision	Collision
	decay ir	produce pion nto muons are captured	s which				

D. Schulte Muon Collider, IMCC Meeting, October 2022

Workplan

Currently two different options considered

- goal is 10+ TeV, the reason to consider muons
- potential intermediate stage (e.g. 3 TeV) explored, will consider other options later ٠

Three main deliverables are foreseen in R&D Roadmap Report:

- a **Project Evaluation Report** that assesses the muon collider potential as input to the **next ESPPU**; (Note: ESPPU because this is a European document, we want to feed into all relevant processes)
- an R&D Plan that describes a path towards the collider; ٠
- an Interim Report by the end of 2023 that documents progress and allows the wider community to • update their view of the concept and to give feedback to the collaboration.

				2022	2023 2024 US P5	2025 2026 ESPPU	2027	2028 2029	2030	2031
			Muon collider pre-CDR study Baseline concept development Documentation		Initial baseline define Interim report					
Scenario	FTEy	M MCHF	Baseline evaluation Documentation CDR study				l and R&D directio esign report	ns identifiéd		
Full scenario	445.9	11.9	Conceptual design development Test programme development Exploratory studies/scope assessment							
Reduced scenario	193	2.45	Initial concept development Documentation			R&D prop	osal report, level de	pends on funding		
<u>http://</u>	arxiv.org/abs/22	2 <u>01.07895</u> °	Final concept development DR R&D programme implementation CDR R&D			· · · ·				
	D. Schulte	Muon	Collider, IMCC Meetin	g, Octo	ber 2022		a la consta			

Resources and Workplan

EU Design Study proposal has been accepted

- finalising contracts
- kick-off meeting likely March 2023
- but some work already started

Current resources still below reduced scenario

- working on increasing them
- adjusting workplan priorities

Can only partially achieve goals before ESPPU

Workplan evolves taking in to account availability of resources and partner interest

- not strictly following reduced scenario
- leaves room for increase

Discussions ongoing in many places

- moving target
- asked Nadia Pastrone to chair Resource Task Force

MInternational WON Collider Collaboration

Accelerator R&D Roadmap

Scenario	FTEy	M MCHF
Full scenario	445.9	11.9
Reduced scenario	193	2.45

Contributed to Snowmass

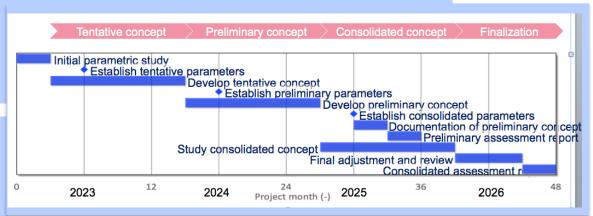
Many other efforts ongoing

e.g. CHART approved some support

Meanwhile doing work with the resources that we have

D. Schulte Muon Collider, IMCC Meeting, October 2022

EU Design Study


HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development

January 2023 to December 2026 Kick-off probably March 2023 Finalising Grant and Consortium Agreements ⇒ Roberto

Workpackages

- 1. Coordination and Communication
- 2. Physics/Detector Performance Requirements
- 3. Proton Complex
- 4. Muon Production and Cooling
- 5. High-energy Complex
- 6. RF Systems
- 7. Magnetic Systems
- 8. Muon Cooling Module

EU contribution 3 MEUR = 580 pm, partners 680 pm, CERN requested budget increase +1.5 MCHF

Plan to also apply for next HORIZON-INFRA-2024-TECH call in 2024, to develop technologies (up to 10 MEUR)

Goal is to prepare experimental programme, e.g. demonstrator, prototypes, ...

Preparation to start early next year

Muon Collider, IMCC Meeting, October 2022

International

ollaboration

Schulte

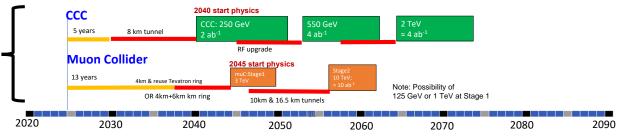
D. Schulte

Snowmass

Updated July 25, 2022 by MN

Strong interest in the US community in muon collider

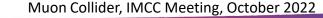
- seen as an energy frontier machine
- decoupled from LC


US community wants funding for R&D

Community interested in the US to host a muon collider

D. Schulte

Proposals emerging from this Snowmass for a US based collider

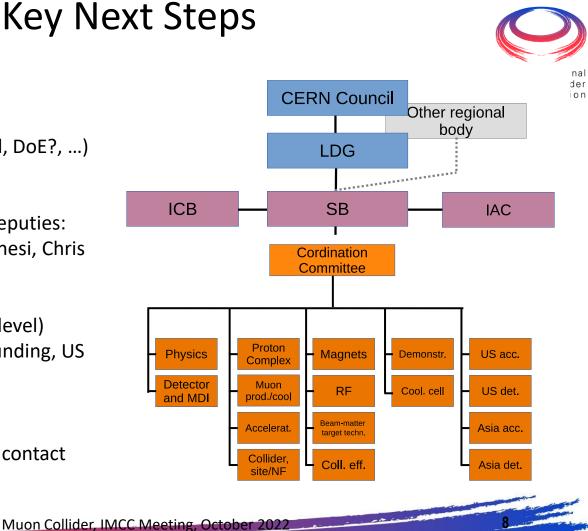


- Timelines technologically limited
- Uncertainties to be sorted out
 - Find a contact lab(s)

USA

- Successful R&D and feasibility demonstration for CCC and Muon Collider
- Evaluate CCC progress in the international context, and consider proposing an ILC/CCC [ie CCC used as an upgrade of ILC] or a CCC only option in the US.
- International Cost Sharing
- Consider proposing hosting ILC in the US.

Meenakshi Narain: Energy Frontier / Large Experiments, Snowmass Community Summer Study July 17-26, 2022


Key Next Steps

Formal organisation

- **Collaboration Board**
 - First session today => Steinar
- **Steering Board** (link to CERN Council, DoE?, ...)
 - Chair Steinar Stapnes
- **Coordination committee**
 - Study Leader Daniel Schulte, deputies: Andrea Wulzer, Donatella Lucchesi, Chris Rogers, to be endorsed by CB
 - members are already working •
- **Securing resources** (not yet at reduced level)
- Institutes, national funding, EU co-funding, US Snowmass/P5, ...
- your help needed

If you want to join and sign **MoC** please contact muon.collider.secretariat@cern.ch

D. Schulte

MoC and Design Study Partners

IEIO	CERN	UK	RAL	FI	Tampere University	Ň		
FR	CEA-IRFU		UK Research and Innovation	US	Iowa State University	M Inter UON Collabo		
	CNRS-LNCMI		University of Lancaster		Wisconsin-Madison	IT	INFN Frascati	
DE	DESY		University of Southampton		BNL		INFN, Univ. Ferrara	
	Technical University of Darmstadt		University of Strathclyde	China	Sun Yat-sen University		INFN, Univ. Roma 3	
	University of Rostock		University of Sussex		IHEP		INFN Legnaro	
	KIT		Imperial College		Peking University		INFN, Univ. Milano	
IT	INFN		Royal Holloway	EST	Tartu University		Bicocca	
	INFN, Univ., Polit. Torino		University of Huddersfield	LAT	Riga Technical Univers.		INFN Genova	
	INFN, Univ. Milano		University of Oxford	AU	НЕРНҮ		INFN Laboratori del S	
	INFN, Univ. Padova		University of Warwick	7.0	TU Wien		INFN Napoli	
	INFN, Univ. Pavia		University of Durham	ES		US	FNAL	
	INFN, Univ. Bologna	SE	ESS University of Uppsala		I3M		LBL	
	INFN, Oniv. Bologna			СН	PSI		JLAB	
		РТ	LIP		University of Geneva		Chicago	
	INFN, Univ. Bari	NL	University of Twente		EPFL	lanan	-	
	INFN, Univ. Roma 1			BE	Louvain	Japan	Akira Yamamoto	
	ENEA	=	Steinar for detail				Akira Sato	
	D. Sc	hulte	Muon Collider, IN	/ICC Meet	ing, October 2022		Toru Ogitsy	

International UON Collider llaboration

na 3 ano del Sud Toru Ogitsu

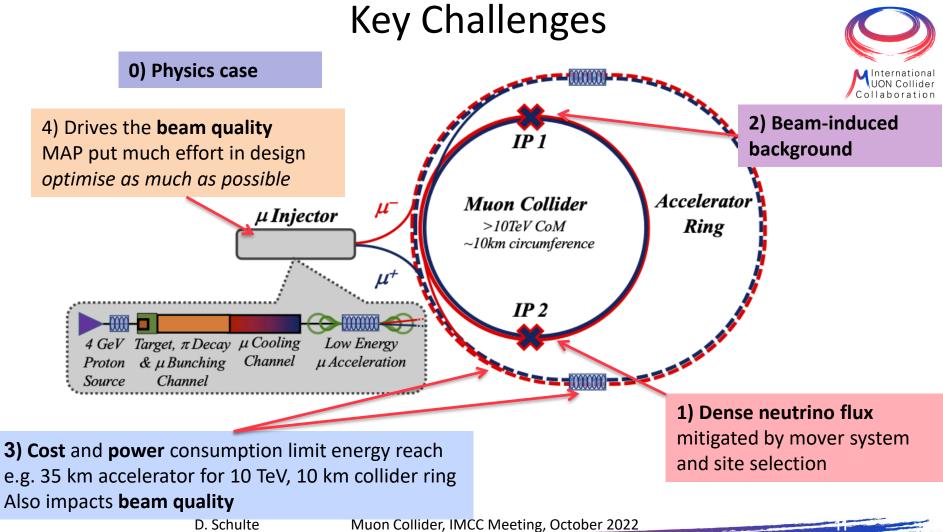
CC Members

To be endorsed by SB

Physics	Andrea Wulzer
Detector and MDI	Donatella Lucchesi
Protons	Natalia Milas
Muon production and cooling	Chris Rogers
Muon acceleration	Antoine Chance
Collider	Christian Carli
Magnets	Luca Bottura

RF	Alexej Grudiev
Beam-matter int. target systems	Anton Lechner
Collective effects	Elias Metral

Cooling cell design	to be filled after EU decision
Demonstrator	Roberto Losito


US (detector)	Sergo Jindariani	
US (accelerator)	Mark Palmer	
Asia (China)	Jingyu Tang	
Asia (Japan)	tbd	

EU Design Study WP leaders:

EU RF WP	Claude Marchand
Cooling cell	Lucio Rossi

Proposal for deputies (to be endorsed by ICB): Andrea Wulzer Donatella Lucchesi Chris Rogers

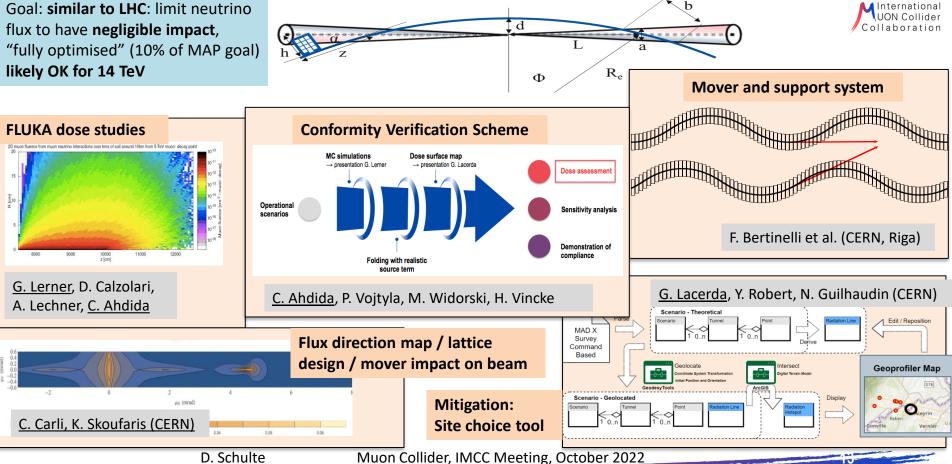
D. Schulte

Initial Target Parameters

Target integrated luminosities

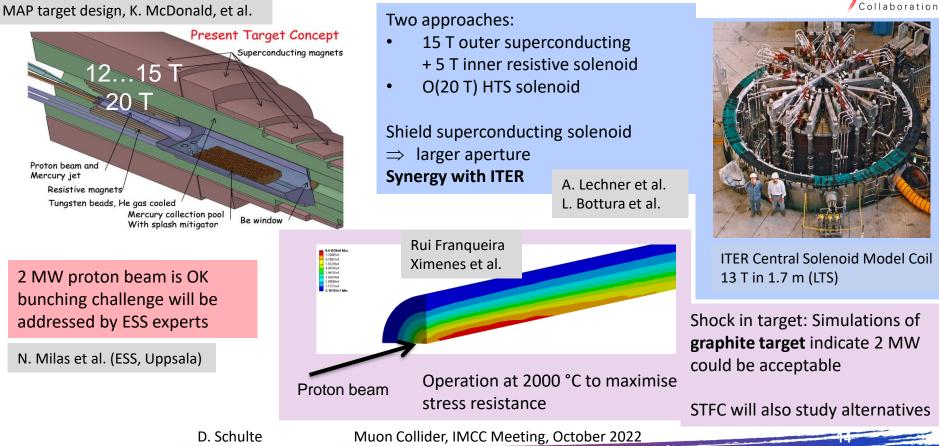
\sqrt{s}	$\int \mathcal{L} dt$
3 TeV	$1 {\rm ~ab^{-1}}$
$10 { m TeV}$	$10 {\rm ~ab^{-1}}$
$14 { m TeV}$	$20 {\rm ~ab^{-1}}$

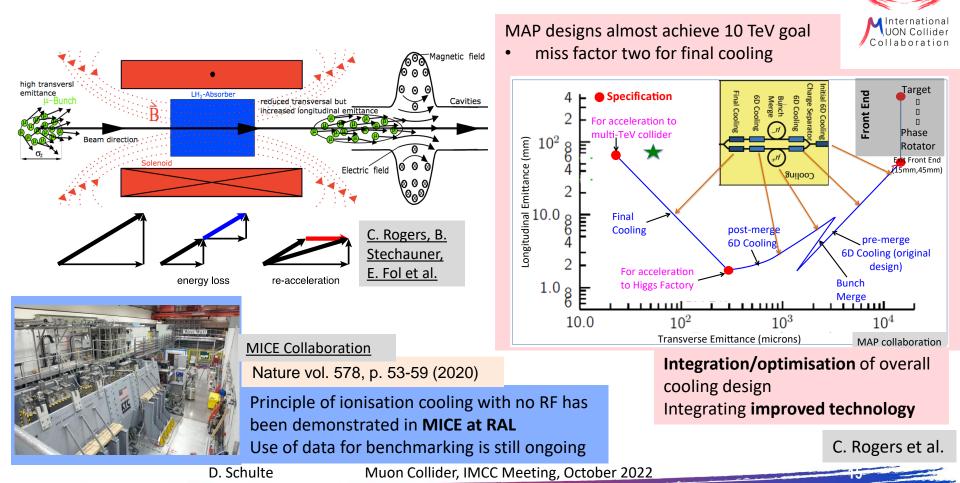
Note: currently focus on 10 TeV, also explore 3 TeV


- Tentative parameters based on MAP study, might add margins
- Achieve goal in 5 years
- FCC-hh to operate for 25 years

D. Schulte

• Aim to have two detectors


Parameter	Unit	3 TeV	10 TeV	14 TeV	CLIC at 3 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40	2 (6)
Ν	10 ¹²	2.2	1.8	1.8	
f _r	Hz	5	5	5	
P _{beam}	MW	5.3	14.4	20	28
С	km	4.5	10	14	
	Т	7	10.5	10.5	
ε	MeV m	7.5	7.5	7.5	
σ _E / Ε	%	0.1	0.1	0.1	
σ	mm	5	1.5	1.07	
β	mm	5	1.5	1.07	
3	μm	25	25	25	
$\sigma_{x,y}$	μm	3.0	0.9	0.63	
Muon Collid	er, IMCC Meeting	g, October 2022			



Target

Muon Cooling

Cooling Cell Technology

C. Marchand, Alexej Grudiev et al. (CEA, Milano, CERN, Tartu)

MAP demonstrated 30 T solenoid

- now magnets aim for 40+ T
- even more can be possible
- synergy with high-field research

L. Bottura et al. INFN (Task Leader), CEA, CERN, LNCMI, PSI, SOTON, UNIGE and TWENTE, in collaboration with **KEK and US-MDP**

D. Schulte

RF cavities

Will develop **cooling cell**

tight constraints

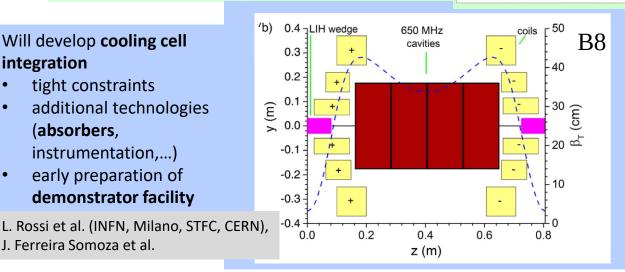
instrumentation,...)

early preparation of

demonstrator facility

(absorbers,

J. Ferreira Somoza et al.


additional technologies

integration

MAP demonstrated higher than goal gradient Improve design based on theoretical understanding

Preparation of new experiments

- Test stand at CEA (700 MHz, need funding)
- Test at other frequencies in the UK considered
- Use of CLIC breakdown experiment considered

Muon Collider, IMCC Meeting, October 2022

MuCool demonstrated

-filled copper

50 MV/m in 5 T

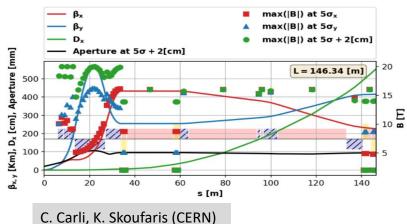
Be end caps

Acceleration Complex

Acceleration	Baseline is sequence of pulsed synchrotron (0.4-11 ms) Started to develop integrated design					
⊨ ĭ∕ `	Lattice design for larger energy bandwidth A. Chance et al. (CEA)					
Accelerators:	 Fast-ramping normal magnets HTS starts to look interesting profit from MAP study and US 	rmstadt,				
Linacs, RLA or FFAG, RCS	First models of power converter with energy F. Boattini et al.	Iternative FFA				
	 RF with high transient beam loading seems 1.3 GHZ could be possible Impedance and beam stability H. Damerell, F. Batsch, U. van Rienen, A. Grudiev, E. Matral et al. (Rostock, Milano, CERN) 	IMA proof of FFA nciple ture Physics 8				
	Exploration of FFA as an alternative	3-247 (2012)				
FNAL 1 kT/s HTS magnet		V CONTRACTOR				
	D. Schulte Muon Collider, IMCC Meeting, October 2022					

Collider Ring

MAP developed 4.5 km ring for 3 TeV with Nb₃Sn


- magnet specifications in the HL-LHC range
- 5 mm beta-function at IP

Work on 10 km ring for 10 TeV collider ring

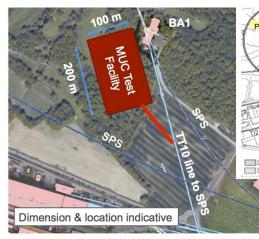
- around 16 T Nb₃Sn or HTS dipole field around 15 cm
- final focus based on HTS
- 1.5 mm beta-function at IP

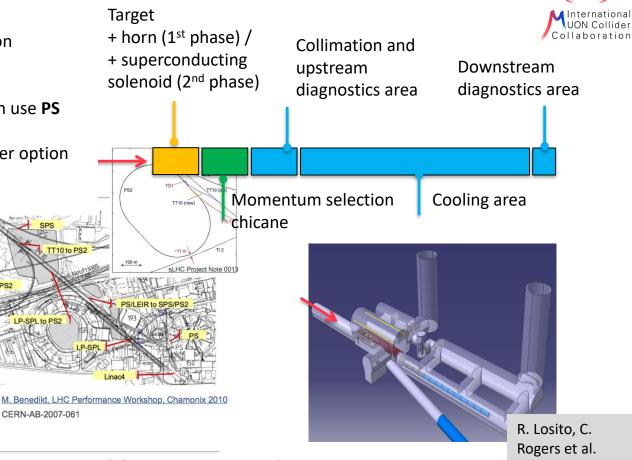
15 cm aperture for Shielding Energy density per bunch crossing (mJ/cm³) 10^{0} shielding to ensure 10^{-1} A. Lechner 20 10⁻² magnet lifetime D. Calzolari 10^{-3} 10 10^{-4} (CERN) 10⁻⁵ Need stress Coil 10⁻⁶ -10 managed magnet 10⁻⁷ 10⁻⁸ -20 designs 10^{-9} -30INFN, Milano, Kyoto, -30-20 -1010 20 30 0 x (cm) CERN, profit from US

D. Schulte

Field choice will be reviewed for cost Example alternatives:

- a 6 km 3 TeV ring with **NbTi** at 8 T in arcs
- a 15 km 10 TeV ring with HL-LHC performances
- slight reduction in luminosity


Demonstrator Facility Consideration


Planning **demonstrator** facility with muon production target and cooling stations

Suitable site exists on CERN land and can use PS proton beam

could combine with NuStorm or other option

Other sites should be explored (FNAL?)

D. Schulte

to SPS

Short-term Goals

- Start Design Study
- Increase resources and integrate more partners
 - react to P5, INFRA-TECH proposal, other opportunities
 - ICB will be instrumental
- Continue and ramp up work
 - Technologies and design
 - Develop alternative parameter sets to explore parameter space
 - Consider re-use of existing infrastructure
 - Start to develop scenarios toward a collider consistent with HL-LHC operation until 2042 and considering opportunities on the way (proton complex, NuStorm, ...)
 - workshop on non-collider physics at muon collider, demonstrator and synergies
- Provide interim report by the end of 2023
 - Workplan, resources, initial results

D. Schulte

Conclusion

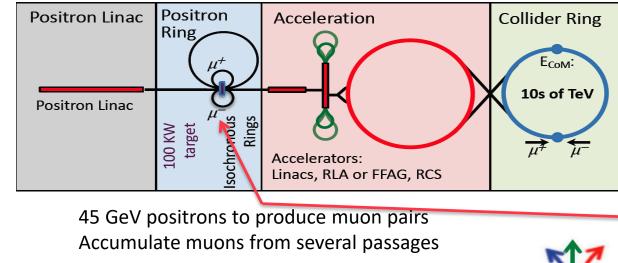
- First important results are being obtained
- We started turning Roadmap into a workplan
- Managed to gain support from EU
- Strong support in US Snowmass process
- Important goals for next year
 - successful start of Design Study
 - preparation of INFRA-TECH study
 - Fostering the collaboration with help of ICB
 - integration of more partners
 - increase in resources
 - Interim Report
 - continue and ramp up good work

http://muoncollider.web.cern.ch

D. Schulte Muon Collider, IMCC Meeting, October 2022

Many thanks to the many people that helped with the work

Reserve



D. Schulte

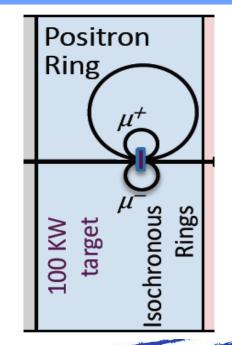
Alternatives: The LEMMA Scheme

LEMMA scheme (INFN) P. Raimondi et al.

$$e^+e^- \to \mu^+\mu^-$$

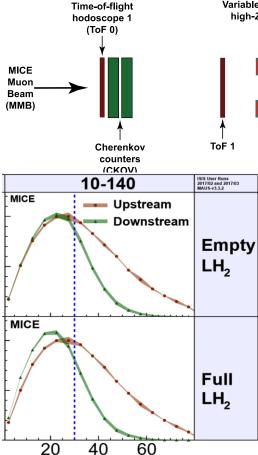
Excellent idea, but nature is cruel

Detailed estimates of fundamental limits show that we require a very large positron bunch charge to reach the same luminosity as the proton-based scheme

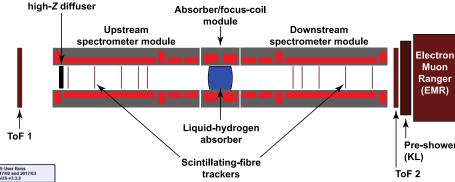

 \Rightarrow Need same game changing invention

D. Schulte

Muon Collider, IMCC Meeting, October


Note: New proposal by C. Curatolo and L. Serafini needs to be looked at

Uses Bethe-Heitler production with electrons



MICE: Cooling Demonstration

7th February 2015

D. Schulte

Variable thickness

More particles at smaller amplitude after absorber is put in place

Principle of ionisation cooling has been demonstrated Use of data for benchmarking is still ongoing

WEPOPT053

Muon Collider, IMCC Meeting, October 2022

🛕 International

UON Collider

Nature vol. 578, p. 53-59 (2020)

More complete experiment with higher statistics, more than one stage required

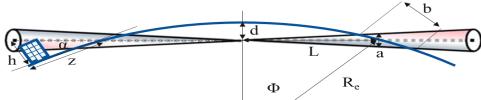
Integration of magnets, RF, absorbers, vacuum is engineering challenge

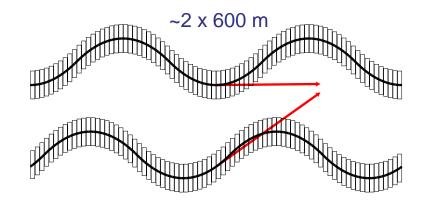
Neutrino Flux

Dense neutrino flux cone can impact environment Challenge scales with **E x L**

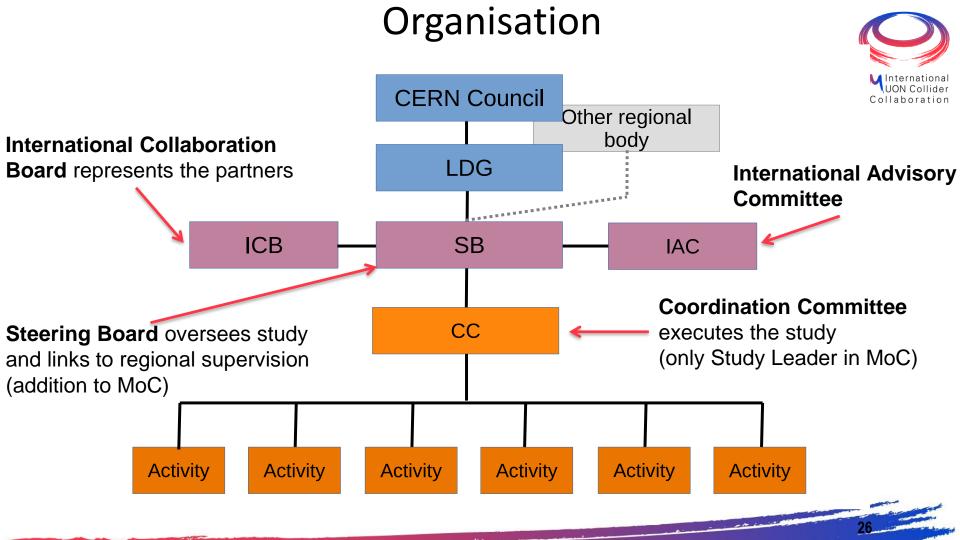
Goal is to reduce to negligible level, similar to LHC

• 3 TeV, 200 m deep tunnel is about OK


Expand idea of Mokhov, Ginneken to move beam in aperture: move collider ring components, e.g. vertical bending with 1% of main field


- 14 TeV, in 200 m deep tunnel comparable to LHC case with +/- 1 mradian
- scales with luminosity toward higher E

Need to study mover system, magnet, connections and impact on beam


Working on different approaches for experimental insertion

D. Schulte

Other optimisations are possible (magnetic field, emittance etc.)

Thanks

Muon Beam Panel: Daniel Schulte (CERN, chair), Mark Palmer (BNL, co-chair), Tabea Arndt (KIT), Antoine Chance (CEA/IRFU) Jean-Pierre Delahaye (retired), Angeles Faus-Golfe (IN2P3/IJClab), Simone Gilardoni (CERN), Philippe Lebrun (European Scientific Institute), Ken Long (Imperial College London), Elias Metral (CERN), Nadia Pastrone (INFN-Torino), Lionel Quettier (CEA/IRFU), Magnet Panel link, Tor Raubenheimer (SLAC), Chris Rogers (STFC-RAL), Mike Seidel (EPFL and PSI), Diktys Stratakis (FNAL), Akira Yamamoto (KEK and CERN) **Contributors:** Alexej Grudiev (CERN), Roberto Losito (CERN), Donatella Lucchesi (INFN)

Community conveners: *Radio-Frequency (RF):* Alexej Grudiev (CERN), Jean-Pierre Delahaye (CERN retiree), Derun Li (LBNL), Akira Yamamoto (KEK). *Magnets:* Lionel Quettier (CEA), Toru Ogitsu (KEK), Soren Prestemon (LBNL), Sasha Zlobin (FNAL), Emanuela Barzi (FNAL). *High-Energy Complex (HEC):* Antoine Chance (CEA), J. Scott Berg (BNL), Alex Bogacz (JLAB), Christian Carli (CERN), Angeles Faus-Golfe (IJCLab), Eliana Gianfelice-Wendt (FNAL), Shinji Machida (RAL). *Muon Production and Cooling (MPC):* Chris Rogers (RAL), Marco Calviani (CERN), Chris Densham (RAL), Diktys Stratakis (FNAL), Akira Sato (Osaka University), Katsuya Yonehara (FNAL). *Proton Complex (PC):* Simone Gilardoni (CERN), Hannes Bartosik (CERN), Frank Gerigk (CERN), Natalia Milas (ESS). *Beam Dynamics (BD):* Elias Metral (CERN), Tor Raubenheimer (SLAC and Stanford University), Rob Ryne (LBNL). *Radiation Protection (RP):* Claudia Ahdida (CERN). *Parameters, Power and Cost (PPC):* Daniel Schulte (CERN), Mark Palmer (BNL), Jean-Pierre Delahaye (CERN retiree), Philippe Lebrun (CERN retiree and ESI), Mike Seidel (PSI), Vladimir Shiltsev (FNAL), Jingyu Tang (IHEP), Akira Yamamoto (KEK). *Machine Detector Interface (MDI):* Donatella Lucchesi (University of Padova), Christian Carli (CERN), Anton Lechner (CERN), Nicolai Mokhov (FNAL), Nadia Pastrone (INFN), Sergo R Jindariani (FNAL). *Synergy:* Kenneth Long (Imperial College), Roger Ruber (Uppsala University), Koichiro Shimomura (KEK). *Test Facility (TF):* Roberto Losito (CERN), Alan Bross (FNAL), Tord Ekelof (ESS,Uppsala University).

And the participants to the community meetings and the study

Other Key Studies

Review proton complex

- average power of 2 MW is no problem
- but merging into 5 pulses of 400 kJ per second needs to be verified

Collective effects across the whole complex to identify bottlenecks

- review apertures, feedback and other specifications
 - first results for aperture requirements
- potential instability of interaction of muon beam with matter

Power and cost optimisation

Vacuum and absorber, instrumentation, cryogenics, ...

Reuse of existing infrastructure, e.g. LHC tunnel to house accelerator

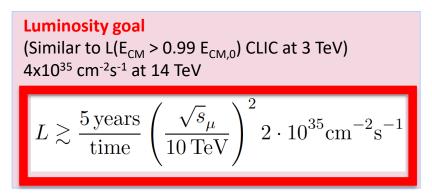
N. Milas et al. (ESS, Uppsala)

E. Metral et al. (CERN, EPFL/CHART)

J. Ferreira Somoza, M. Wendt, et al.

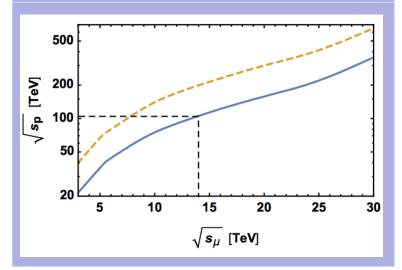
D. Schulte

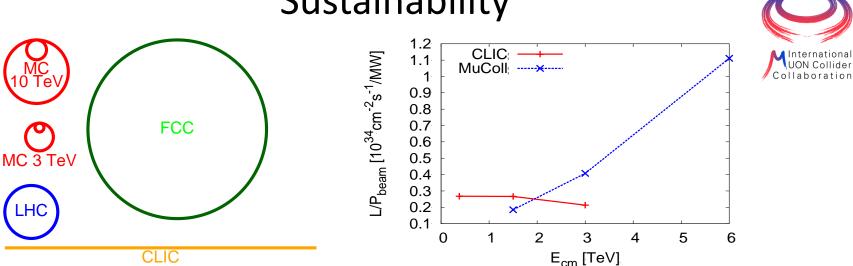
Motivation and Goal


Previous studies in US (now very strong interest again), experimental programme in UK and alternatives studies by INFN

New strong interest:

- Focus on high energy with high luminosity
 - 10+ TeV
 - potential initial energy stage (e.g. 3 TeV)
- Technology and design advances


Combines precision physics and discovery reach


D. Schulte

Discovery reach

14 TeV lepton collisions are comparable to 100-200 TeV proton collisions for production of heavy particle pairs

Sustainability

CLIC

D. Schulte

CLIC is highest energy proposal with CDR

- No obvious way to further improve linear colliders (decades of R&D)
- Cost 18 GCHF, power 590 MW

Rough rule of thumb:

- cost proportional to energy
- power proportional to luminosity .

Muon Collider goals (10 TeV), challenging but reasonable:

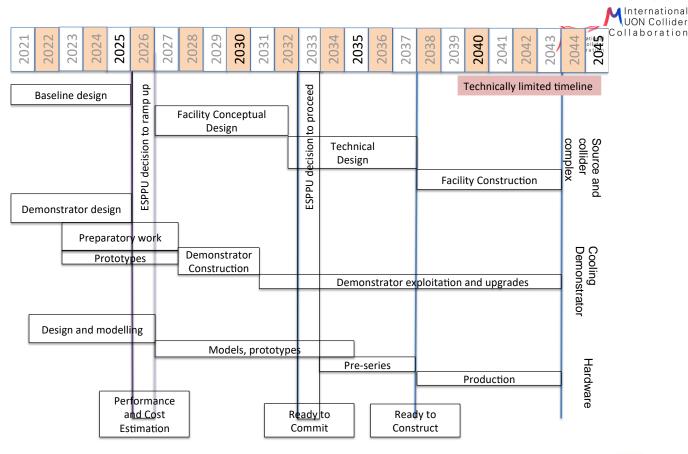
- Much more luminosity than CLIC at 3 TeV (L=20x10³⁴, CLIC: $L=2x10^{34}/6x10^{34}$)
- Lower power consumption than CLIC at 3 TeV (P_{beam.MC}=0.5P_{beam.CLIC})
- Lower cost

Staging is possible

Synergies exist (neutrino/higgs)

Unique opportunity for a high-energy, high-luminosity lepton collider

Timeline


Muon collider important in the long term

Prudently explore if MuC can be option as next project

- e.g. in Europe if higgs factory built elsewhere
- sufficient funding required now
- very strong ramp-up required after 2026
- fast-track project might require some compromises on initial scope and performance

D. Schulte

3 TeV? •

International JON Collider

Test Facility, Staging and Physics Programme

- Can envisage a staged approach to a muon collider
 - Tentatively 3 TeV considered
 - to be able to profit from CLIC detector work and to be able to compare to CLIC
 - probably splits cost in half
 - Need to refine choice
 - In particular if no other collider is being built in the coming years
- Can also provide **non-collider physics**
 - test facility could be synergistic with neutrino user facility
- **Synergies** on technology development exist (targets, ...)
- Plan a workshop on test facility, synergies and non-collider physics next year
 - please let me know if you want to contribute

D. Schulte Muon Collider, IMCC Meeting, October 2022