

#### **Muon Collider Detector**

Sergo Jindariani (Fermilab) IMCC Annual Meeting October 2022 On behalf of the Muon Collider Physics and Detector and MDI Groups, with input from Snowmass Thank you to all of the contributors!

#### **Detector Parallel Sessions**

| Machine-induced background studies for 1.<br>40/S2-D01 - Salle Dirac, CERN | Wed morning - MD       | cesco Collamati<br>10:50 - 11:10 |
|----------------------------------------------------------------------------|------------------------|----------------------------------|
| IR optics design for the 10 TeV Muon Collide                               | ïr                     | Kyriacos Skoufaris               |
| 40/S2-D01 - Salle Dirac, CERN                                              |                        | 11:10 - 11:30                    |
| Machine-induced background studies for th                                  | e 10 TeV Muon Collider | Daniele Calzolari                |
| 40/S2-D01 - Salle Dirac, CERN                                              |                        | 11:30 - 11:50                    |
| How to use BIB data as input for the detector                              | r design               | Nazar Bartosik                   |
| 40/S2-D01 - Salle Dirac, CERN                                              |                        | 11:50 - 12:10                    |
| Magnetic field configurations for the detector                             | r                      | John Hauptman                    |
| 40/S2-D01 - Salle Dirac, CERN                                              |                        | 12:10 - 12:30                    |

irizka

| V | Ved afternoon - reconstru                                             | uction 4:25             |
|---|-----------------------------------------------------------------------|-------------------------|
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 14:25 - 14:50           |
|   | Electrons and photons reconstruction                                  | Massimo Casarsa         |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 14:50 - 15:15           |
|   | Jets reconstruction and b-tagging: leasson learned and new strategies | Lorenzo Sestini         |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 15:15 - 15:55           |
|   | Coffee Break                                                          |                         |
|   | CERN                                                                  | 16:00 - 16:20           |
|   | Physics results with full sim and comparison with FastSim             | Luca Giambastiani       |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 16:20 - 16:45           |
|   | Future collider framework (TBA)                                       |                         |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 16:45 - 17:10           |
|   | Software status and future developments                               | Alessio Gianelle et al. |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 17:10 - 17:35           |
|   | Simulated sample, shared resources, FastSim update (TBA)              |                         |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 17:35 - 17:55           |
|   | BIB usage                                                             | Nazar Bartosik          |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 17:55 - 18:15           |
|   | Discussion                                                            |                         |
|   | 40/S2-D01 - Salle Dirac, CERN                                         | 18:15 - 18:30           |
|   |                                                                       |                         |

#### Thu morning – detector R&D

| R&D stu  | dies on tracking detector             | Nicolo Cartiglia |
|----------|---------------------------------------|------------------|
| 42/3-032 | , CERN                                | 09:00 - 09:15    |
| _        |                                       |                  |
| R&D stu  | dies on calorimeter detector          | ivano sarra      |
| 42/3-032 | , CERN                                | 09:20 - 09:35    |
|          |                                       |                  |
| R&D stu  | dies on muon detector                 | Ilaria Vai       |
| 42/3-032 | , CERN                                | 09:40 - 09:55    |
|          |                                       |                  |
| Physics  | opportunities with a muon "beam dump" | Cari Cesarotti   |
| 42/3-032 | , CERN                                | 10:00 - 10:30    |

#### Thu afternoon – towards 10 TeV

| Theory: status, needs and plans                                    | Prof. Fabio Maltoni |
|--------------------------------------------------------------------|---------------------|
| 42/3-032, CERN                                                     | 14:00 - 14:25       |
| Toward 10 TeV detector studies                                     | Laura Buonincontri  |
| 42/3-032, CERN                                                     | 14:25 - 14:45       |
| Photon reconstruction                                              | Federico Nardi      |
| 42/3-032, CERN                                                     | 14:45 - 15:05       |
| Discussion on physics objects reconstruction in the forward region |                     |
| 42/3-032, CERN                                                     | 15:05 - 15:20       |
| Discussion on needs to go to high energy                           |                     |
| 42/3-032, CERN                                                     | 15:20 - 15:35       |
| LFUV at muon collider                                              | Admir Greljo        |
| 42/3-032, CERN                                                     | 15:35 - 16:00       |



2

# **Muon Collider Physics**



Order of magnitude in Higgs precision wrt HL-LHC and can directly probe the scale implied in same machine!



Self-coupling: at 3 TeV better than LHC. At 10 TeV similar or better than FCC-hh.



Covers *simplest* WIMP candidates hard or impossible with next gen DM direct detection



Unprecedented reach for strongly motivated BSM scenarios



## **Muon Collider Detector Requirements**

Muon Collider Physics program imposes stringent requirement on data reconstruction:

- High performance tracking for Particle Flow reconstruction
- + Good calorimetric energy resolution  $\rightarrow$  need to separate Z from Higgs
- Performant heavy flavor tagging (e.g. H→bb/cc)
- Ability to reconstruct high energy leptons/jets for BSM physics
- Maintain acceptance/efficiency for unconventional signatures (LLP, HSCP, etc)



#### **Beam Induced Background**

- Beam background is one of the unique features/challenges of Muon Colliders
- Main Source of Beam Induced Background (BIB) are showers produced by electrons originating in beam muon decays
- The challenge is to separate collision particles from the BIB
- Detector environment and occupancy can be harsh





#### **Machine Detector Interface**



# **Current Detector Configuration**

Adopted from CLIC with some modifications  $\sim 10^{\circ}$  acceptance limitation due to the nozzles



#### **BIB properties**



## **Radiation Levels**





- Low momentum particles
- Partially out-of-time with respect to the bunch crossing
- Often, not pointing to the interaction region



#### Tracker

- Goal: bring occupancy to <1% level. Pixel size and timing requirements optimized to achieve this goal
- Hit density in inner layers approximately 2-5 times higher than at the LHC
- Other requirements are not unique: low mass/power, radiation tolerance, low noise
- Correlation between layers
- Cluster shape



| Detector Layer | ITk Hit Density $[mm^{-2}]$ | Muon Col. Hit Density $[mm^{-2}]$ |
|----------------|-----------------------------|-----------------------------------|
| Pixel Layer 0  | 0.643                       | 3.68                              |
| Pixel Layer 1  | 0.22                        | 0.51                              |
| Strip Layer 1  | 0.003                       | 0.03                              |
|                |                             |                                   |

|     |   | cell size                              | sensor<br>thickness | time<br>resolution | spatial resolution                   | number<br>of cells |
|-----|---|----------------------------------------|---------------------|--------------------|--------------------------------------|--------------------|
| VXD | в | 25 μm × 25 μm<br>pixels                | 50 µm               | 30 ps              | $5\mu\text{m}	imes 5\mu\text{m}$     | 729M               |
|     | Е | 25 μm × 25 μm<br>pixels                | 50 µm               | 30 ps              | $5\mu\text{m}	imes 5\mu\text{m}$     | 462M               |
| т   | в | 50 $\mu$ m $	imes$ 1 mm macropixels    | 100 µm              | 60 ps              | $7\mu\text{m}	imes$ 90 $\mu\text{m}$ | 164M               |
|     | Е | 50 $\mu$ m $	imes$ 1 mm macropixels    | 100 µm              | 60 ps              | 7 $\mu m 	imes$ 90 $\mu m$           | 127M               |
| т   | в | 50 μm × 10 mm<br>microstrips           | 100 µm              | 60 ps              | $7\mu\text{m}	imes$ 90 $\mu\text{m}$ | 117M               |
|     | Е | $50 \ \mu m 	imes 10 \ mm$ microstrips | 100 µm              | 60 ps              | $7\mu m 	imes$ 90 $\mu m$            | 56M                |



## **Calorimeters**

- BIB dominated by neutrals: photons (96%) and neutrons (4%).
- Ambient energy about 50 GeV per unit area (~40 GeV in HL-LHC)
- high granularity
- precise hit time measurement O(100ps)
- longitudinal segmentation
- good energy resolution 10%/VE for photons and 35%/VE for jets or better
- Current Design:
  - ECAL: SiW with 22 X<sub>0</sub>, 5x5 mm<sup>2</sup> pads
  - HCAL: Iron+Scintillator with 7.5λ
  - Study new options: Crilin, CalVision,...



1450

1500

1550

1600

1650

Calorimeter hit distance from interaction point [mm]

1700

1750

## **Reconstruction Performance Example**

Preliminary



• Achieved performance specs in the barrel. Needs improvements next to the nozzle



#### **Muon Detectors**

- Muon system is the lest affected by the BIB
- Current design: gaseous detectors interleaved in an iron yoke
- Targets: 100 micron resolution and 1 ns timing
- High number of hits in the forward disks due to the BIB
  - Some technologies reaching rate limits
  - Some contain gas mixture which has a high Global Warming Potential
- New interesting technologies (MPGD, Picosec, mu-RWELL...)





### **Readout/DAQ**

- Key parameter beam crossings every ~10 μs.
- Streaming approach: availability of the full event data → better trigger decision, easier maintenance, simplified design of the detector front-end...

|             | Hit    | On-detector<br>filtering  | Number of<br>Links (20<br>Gbps) | Data Rates | Input links<br>Readout<br>Card<br>Event Builder PC | Residout Card |
|-------------|--------|---------------------------|---------------------------------|------------|----------------------------------------------------|---------------|
| Tracker     | 32-bit | t-t <sub>0</sub> < 1 ns   | ~3,000                          | 30 Tb/s    | Input links                                        | Input links   |
| Calorimeter | 20-bit | t-t₀< 0.3 ns<br>E>200 KeV | ~3,000                          | 30 Tb/s    | Event Builder PC                                   | Input links   |

- Total data rate similar to HLT at HL-LHC ~ streaming operation likely feasible.
- Filtering based on event properties or event content
- High bandwidth and power efficient links, FPGA/GPU acceleration, advanced algorithms



#### **Towards 10 TeV Detector**



### **Towards 10 TeV Lattice**



- Different final focus lattices have been investigated to understand the impact on the BIB.
- Having a dipolar contribution does not significantly reduce the overall BIB.
- The contribution of different decay position to the BIB for a positive muon beams is reported.



# **Towards 10 TeV Nozzle**

 Considering the particles going in the detector area, a tentative nozzle geometry reshaping has been conducted based on the 1.5 TeV MAP nozzle.

MAP-like nozzle

• From preliminary results, the possibility of reducing the BIB is **significant**.





Table 1: Multiplicities of different types of particles produced in a bunch crossing by the beam muon decays after the shielding structure, therefore arriving on the detector surface. In all cases, the <u>MDI optimised for the centre-</u>of-mass energy of 1.5 TeV is assumed.

| Monte Carlo simulator                                   | MARS15             | MARS15             | FLUKA              | FLUKA              | FLUKA                |
|---------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| Beam energy [GeV]                                       | 62.5               | 750                | 750                | 1500               | 5000                 |
| $\mu \text{ decay length [m]}$                          | $3.9\cdot 10^5$    | $46.7\cdot 10^5$   | $46.7\cdot 10^5$   | $93.5\cdot 10^5$   | $311.7 \cdot 10^{5}$ |
| $\mu  { m decay/m/bunch}$                               | $51.3\cdot10^5$    | $4.3\cdot 10^5$    | $4.3\cdot 10^5$    | $2.1\cdot 10^5$    | $0.64 \cdot 10^{5}$  |
| Photons $(E_{\gamma} > 0.1 \text{ MeV})$                | $170\cdot 10^6$    | $86\cdot 10^6$     | $51\cdot 10^6$     | $70\cdot 10^6$     | $107 \cdot 10^{6}$   |
| Neutrons $(E_n > 1 \text{ MeV})$                        | $65\cdot 10^6$     | $76 \cdot 10^{6}$  | $110\cdot 10^6$    | $91\cdot 10^6$     | $101 \cdot 10^{6}$   |
| Electrons & positrons $(E_{e^{\pm}} > 0.1 \text{ MeV})$ | $1.3\cdot 10^6$    | $0.75\cdot 10^6$   | $0.86\cdot 10^6$   | $1.1\cdot 10^6$    | $0.92 \cdot 10^{6}$  |
| Charged hadroms $(E_{h^{\pm}} > 0.1 \text{ MeV})$       | $0.011\cdot 10^6$  | $0.032\cdot 10^6$  | $0.017\cdot 10^6$  | $0.020\cdot 10^6$  | $0.044 \cdot 10^{6}$ |
| ${\rm Muons}\;(E_{\mu^\pm}>0.1\;{\rm MeV})$             | $0.0012\cdot 10^6$ | $0.0015\cdot 10^6$ | $0.0031\cdot 10^6$ | $0.0033\cdot 10^6$ | $0.0048\cdot 10^6$   |
| Approximately flat                                      |                    |                    |                    |                    |                      |

#### **Early Detector Studies**

### Very preliminary!





- Established baseline detector design and performance at 3 TeV
  - paper to be submitted to journal
- Work on 10 TeV detector design has started
- Detector technologies have been rapidly advancing
- Minimum muon collider detector requirements are within reach or already technologically available
- + A lot of work ahead of us with many avenues for improvements come join us!







## **Tracking Performance**

• With some basic hit suppression and track level cuts, get good offline track efficiency and resolutions

Preliminary

 Active work on tracking improvements, including Kalman based algorithm





# Tracker (2)

- Precision timing is critical for reducing the number of BIB hits. Up to a factor of x3 reduction in the inner layers
- Correlation between layers (a la CMS pT module) provides additional large reduction
- Other handles exist
- Some on-detector filtering may be needed

#### Example R&D:

- Monolithic devices
- AC-LGADs
- 3D hybrid pixels
- Intelligent sensors
- Common challenges: services, cooling, low-power ASICS



10

20

z [cm]

displaced

-20

-10

0

z coordinate of BIB particles entering the detector