

Report on the Detector WG

Massimo Casarsa

INFN-Trieste, Italy

International Muon Collider Collaboration – Annual Meeting CERN, October 14-17, 2022

- The activity of the Detector WG began four years ago with full simulation studies based on a sample of beam-induced background and the simulationreconstruction software provided by the US MAP.
- Over time, the original core activity with full simulation has branched out into several lines:
 - machine-induced background simulation and MDI-IR optimization;
 - full simulation studies with a baseline detector:
 - physical objects reconstruction;
 - Physics cases;
 - fast simulation studies;
 - maintenance and development of the simulation and reconstruction software;
 - hardware and software R&D.

INFN Machine-induced background

- Ultimately, the detector design and the development of the event reconstruction algorithms will be driven by the levels of machine-induced background.
- Available lattices for machines at $\sqrt{s} = 1.5$, 3, 10 TeV \Rightarrow FLUKA simulation of beam-induced background.
- MDI and IR configurations are crucial to mitigate the amount of background entering the detector ⇒ have to be optimized for each collision energy.

Machine-induced background studies for 1.5 TeV and 3 TeV	Dr Francesco Collamati 🥝
40/S2-D01 - Salle Dirac, CERN	10:50 - 11:10
IR optics design for the 10 TeV Muon Collider	Kyriacos Skoufaris 🥝
40/S2-D01 - Salle Dirac, CERN	11:10 - 11:30
Machine-induced background studies for the 10 TeV Muon Collider	Daniele Calzolari 🥝
40/S2-D01 - Salle Dirac, CERN	11:30 - 11:50
How to use BIB data as input for the detector design	Nazar Bartosik 🥝
40/S2-D01 - Salle Dirac, CERN	11:50 - 12:10
Magnetic field configurations for the detector	John Hauptman 🥝
40/S2-D01 - Salle Dirac, CERN	12:10 - 12:30

Physics ans Detectors Session on Wed at 11

INFN MDI and IR optimizations

nozzle composition

nozzle tip angle

M. Casarsa

INFN Some preliminary results

Total particle number: comparison with different collider energies

0				
Collider	1.5 TeV	3 TeV	10 TeV	
energy			Jpdated!	
Photons	7.1E+7	9.6E+7	1.07E+8	
Neutron	4.7E+7	5.8E+7	1.01E+8	
e⁺/e⁻	7.1E+5	9.3E+5	9.6E+5	
Ch. hadrons	1.7E+4	2.0E+4	4.3E+4	
Muons	3.1E+3	3.3E+3	4.8E+3	
		Non optimized [14-15]		

3 TeV: 1MeV neutron equivalent

Color scale: 10¹⁶ / cm² / year Normalization: 1.16 × 10¹² av. beam intensity per fill 15 kHz av. bunch crossing frequency 200 days/year

3 TeV: Total Ionizing Dose

5

INFN Physical objects reconstruction

- Reconstruction of physical objects is made challenging by the BIB.
- Defined a baseline detector model based on CLIC's detector and developed custom reconstruction software from ILCSoft to deal with the BIB.
- First results show a good reconstruction performance, despite a nonoptimal detector, untuned reconstruction/identification algorithms, and sometimes very crude mitigation of BIB effects.

Tracks reconstruction algorithms performance	Karol Krizka 🥝
40/S2-D01 - Salle Dirac, CERN	14:00 - 14:25
Muon detectors performance	Chiara Aime' 🥝
40/S2-D01 - Salle Dirac, CERN	14:25 - 14:50
Electrons and photons reconstruction	Massimo Casarsa 🥝
40/S2-D01 - Salle Dirac, CERN	14:50 - 15:15
Jets reconstruction and b-tagging: leasson learned and new strategies	Lorenzo Sestini 🥝
40/S2-D01 - Salle Dirac, CERN	15:15 - 15:55

Physics ans Detectors Session on Wed at 14

6

INFN Tracks, muons, electrons, and photons

7

Jets reconstruction and b tagging

b tagging efficiency

8

INFŃ

- Both full simulation and fast simulation (Delphes) are available for Physics studies:
 - several full-sim studies performed at 3 TeV.
- The detailed detector simulation is also used to check and validate the fast-sim cards.

Physics results with full sim and comparison with FastSim	Luca Giambastiani 🥝
40/S2-D01 - Salle Dirac, CERN	16:20 - 16:45
Future collider framework	Andre Sailer 🥝
40/S2-D01 - Salle Dirac, CERN	16:45 - 17:10
Software status and future developments	Alessio Gianelle et al. 🥝
40/S2-D01 - Salle Dirac, CERN	17:10 - 17:35
Shared resources, simulated sample, FastSim update	Donatella Lucchesi 🥝
40/S2-D01 - Salle Dirac, CERN	17:35 - 17:55
BIB usage	Nazar Bartosik 🥝
40/S2-D01 - Salle Dirac, CERN	17:55 - 18:15

Physics ans Detectors Session on Wed at 16:20

full-sim $H \rightarrow b\overline{b}$

full-sim/fast-sim comparison

		Fulls	sim	Fasts	sim
	-	H->WW	2.9%	H->WW	1.7%
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $		H->ZZ	17%	H->ZZ	11%
	Cross	H->bb	0.75%	H->bb	0.76%
	sections ──→ resolution	* H->μμ	38%	Η->μμ	40%
		Η->γγ	8.9%	Η->γγ	6.1%
$\frac{1}{10} 2000 = \frac{p_{T}(j) > 40 \text{ GeV/c}}{p_{T}(j) < 25}$		HH->4b	30%		
$\stackrel{(1)}{=} 1500 \begin{bmatrix} 1000 \\ 1000 \\ 500 \\ 0 \\ 0 \\ 0 \\ 500 \\ 0 \\ 0 \\ 0 $	Couplings resolution	g _{HWW} g _{HZZ} g _{Hbb} g _{Hµµ} g _{Hγγ}	0.9% 8.2% 0.8% 19% 4.5%	g _{HWW} g _{HZZ} g _{Hbb} g _{Hµµ} g _{Hµµ} g _{Hγγ}	0.55% 5.1% 0.97% 20% 3.2%
		λ ₃	20%	λ ₃ (95% CL)	25%

- Currently, MC event generators for $\sqrt{s} = 10$ TeV available only at LO accuracy.
- The baseline detector was designed for CLIC up to 3 TeV collisions, need to re-think the detector for a 10-TeV collider:
 - as a first step, generator-level studies on the characteristics of the detectable particles produced in 10-TeV collisions.

Monte Carlo challenges for the multi-TeV muon collider	Mauro Chiesa et al. 🥝
6/R-012 - conference room, CERN	14:00 - 14:20
Toward 10 TeV detector studies	Laura Buonincontri 🥝
6/R-012 - conference room, CERN	14:30 - 14:50
Photon reconstruction	Federico Nardi 🥝
6/R-012 - conference room, CERN	14:50 - 15:10

INFN First look at 10-TeV collisions

b-hadrons transverse decay length

INFN Hardware and software developments

- The results with the detailed detector simulation are fostering:
 - dedicated hardware R&D aiming to explore alternative solutions to meet the muon collider requirements;
 - development of more sophisticated software algorithms to improve the event reconstruction and better exploit the capabilities of the new detectors.

R&D studies on tracking detector	Nicolo Cartiglia 🥔	
6/R-012 - conference room, CERN	09:00 - 09:15	
R&D studies on calorimeter detector 6/R-012 - conference room, CERN	ivano sarra 🥝 09:20 - 09:35	Physics ans Detectors Session on Thu at 9
R&D studies on muon detector	Ilaria Vai 🥖	
6/R-012 - conference room, CERN	09:40 - 09:55	

RSD-based tracker

fast-timing MPGD for the muon detector

PbF₂ crystal calorimeter

- A lot of productive discussions in all Sessions:
 - noteworthy the interesting idea of detecting/tagging the forward-scattered muons => a dedicated study to be done in collaboration with the MDI experts.
- Simulation and reconstruction software:
 - source code is available in github;
 - MuonColliderSoft releases are published in dockerhub and mirrored in /cvmfs/unpacked.cern.ch/registry.hub.docker.com/infnpd.

A lot of uncharted territory yet to be explored! If anybody is interested in contributing, please contact us.