Proton, Target and Cooling: Summary

NINTERNATIONAL UON Collider Collaboration

Chris Rogers*, ISIS Neutron and Muon Source, Natalia Milas, ESS,

On behalf of the proton, target and cooling WPs

*chris.rogers@stfc.ac.uk

Low energy complex

- Produce a multi-MW and extremely short O(ns) proton pulse
- Fire protons onto a target to make pions
- Capture the pions and decay to muons
- (Bunch the muons)
- Reduce the beam size cool the resultant muon beams

Luminosity

- P_p proton beam power
- n_b number of bunches
- f_r rep rate (number of acceleration cycles/second)
- ε_{perp} transverse emittance
- ε_{L} longitudinal emittance
- $\eta_{+/-}$ proton to muon conversion ratio

Novel muon source concepts

Muon Catalysed Fusion-based source (Y. Mori)

- Produce negative muons on a target
- Negative muons travel into D-T mix \rightarrow Muonic He+
- Reaccelerate He+ and strip → low emittance negative muon source
- Need to challenges considering some of the RF gradients required

Novel positron production target for LEMMA (M. Eldred)

- Fire electrons onto a crystal
- Produce ~GeV photons
- Photons strike secondary target to produce positrons
- Need to understand if we sufficiently mitigate the challenges in LEMMA positron production

Proton Driver Siting Main Inject

European Siting (C. Plostinar)

- Multi MW machine demonstrated
- Pulse compression is the challenge
- Considerations on project set-up
 - Green Field vs Established Lab
 - In-kind setup

US Siting (J. Eldred)

- Synergies with other Neutrino Facilities
- Muon collider is compatible with PIP III
- R&D topics to consider
 - H- laser stripping
 - Pulse Compression Beam Dynamics
 - Extreme Space Charge

Pulse Compression (D. Neuffer)

- Baseline MAP design: Full energy Linac at 8 GeV + Accumulator and Compressor rings (could be design as a single ring?)
- Keep the final pulse length between 1-3 ns rms.
- Accumulator with h=4 (4 bunches), $\frac{1}{4}$ rotator and combination of bunches onto the target
 - 2 x 10¹⁴ p/bunch (15 Hz and 4 MW) -> (2 MW, 5 Hz similar intensities for MuCol for the same energy)
- A more complete study and transport to target of such smalls pulse is still needed but the whole compression looks feasible. Still more work on Space Charge effects is needed.
- J-PARC MR reaches a bunch intensity needed for the MC (200 kJ/bunch) → Look at other machines already established

Three targets under consideration

Graphite (R. Franquiera) Well-known.... T2K/CNGS Lifetime vs radius *Pion yield*

Fluidised tungsten powder (C. Densham) Novel Tungsten handling?

Liquid lead (C. Carelli) Pressure waves/cavitation Prior experience with Hg

& Technology Facilities Council

Factor ~ 6 improvement using solenoid focus target over LBNF horn

Rectlinear Cooling (Rogers)

Final Cooling (B. Stechauner)

Cell configuration							Beam parameters (end of the cell)				
	Length [m]	LH thickness [m]	Drift [m]	1. Freq [MHz]	1. Vmax [MV]	2. Phase	En ittence îr. [mi : mrad]	Emittance Long. [mm]	Bunch length [mm]	Pz [MeV/c]	Pz spread
							300,0	1,56	49,9	135	3,5
1	7,4	0,21	0,9	321	17,9	57	278	2,18	73,5	121,3	3,85
2	5,56	0,17	0,56	266	10,4	46,1	256	2,27	69,3	105,78	3,5
3	5,45	0,11	0,7	24.`	10,8	81,3	243	3,7	134,5	102,2	5,4
4	4,6	0,11	0,85	201	10,48	76,3	229	6,4	400	95,6	6,7

Concern about liquid hydrogen "blow out"

Final cooling stages:- hydrogen vapour & limited energy loss to maintain a feasible magnet length Exotic alternative absorbers may be considered

20MeV to 5Mev

US Studies (D. Stratakis)

- Use of wedge absorber to reduce momentum \hat{b}_{a} spread in g-2 beamline
- Example of emittance exchange?
- Successfully enhanced the muon rate in g-2

Further Thoughts

- Low energy complex requires tricky, multi-parameter optimisation
 - Need to ensure that we are careful to work to a common baseline
 - Suitably updated; releases and versioning of geometries/etc
- Develop a list of technical issues
 - Capture all the problems, make sure nothing gets forgotten
 - Reduce bus factor
- Develop a job list
 - "WBS"
 - Make sure it's clear who is doing what
 - Capture any gaps (there are many)
 - Ensure clear understanding of what we can/cannot do with current resource levels

Conclusions

- **Great** start to the design process
 - Concepts and progress in every area
 - Mode is establishing a baseline
 - Uncovered some technical issues
 - Nothing yet that can prevent a facility being constructed
- Looking forwards to the year ahead
- Many thanks to all those who contributed

